1. (a) conduction rod / target / anode
 copper / thickness of rod
 good conductor / increases amount of conduction (of thermal energy)

 (b) convection fins
 large surface area / number of fins / spaces between fins
 large contact with air / allows air to rise between fins

 (c) radiation fins / black surface / end of rod
 black surface / large surface area
 good emitter / large radiating surface ignore absorber
2 (a) **electrical method**
lagged container + lid
liquid (allow) water
heater in liquid
heater connected to electrical supply (seen or stated)
voltmeter and ammeter appropriately connected (seen)
thermometer

5 points 3
4 points 2
3 points 1

OR

mixtures method
lagged container
liquid
hot solid/hot liquid
means of heating hot solid / liquid (seen or stated)
means of weighing hot solid / liquid / use of known mass (seen or stated)
thermometer

5 points 3
4 points 2
3 points 1

(iii) **electrical method**
initial & final temps of liquid OR temp rise
voltmeter reading (however expressed)
ammeter reading (however expressed)
heating time
mass of liquid

-1 e.e.o.o.

OR

mixtures method
initial and final temps of liquid OR temp rise
initial and final temps of added solid / liquid OR temp drop
mass of added solid / liquid
mass of liquid
SHC of added solid / liquid

-1 e.e.o.o

(b) \[Q = mc\dot{\theta} \quad \text{in any form} \]
\[100.6 - 12 \quad \text{OR} \quad 88.6 \]
\[0.8 \times 3900 \times 88.6 \]
\[276 \ 432 \ J \]

\[Q = Wt \quad \text{OR} \quad (t = \text{candidate's (i)}/620) \]
\[445.858 \ s \quad \text{ecf (i)} \]
3 (a) energy / heat required to change state / phase / any example of change of state / phase
 with no change in temperature / at a specified temperature OR energy to break bonds between molecules / atoms
 with no change in K.E.

(b) any time or range of time between 1.6 (min) and 14.0 (min) inclusive [no UP]

(c) turns substance to gas / vapour OR causes evaporation OR escape from liquid
 energy to break bonds / separate molecules / overcome intermolecular forces
 Ignore move faster / PE increases

 480 000 J OR 480 kJ

 (ii) (l) = 43 (°C) seen anywhere
 Q = mcθ OR 480000 = m x 1760 x 43 in any form ecf. from (i)
 6.34 kg or 6.3 kg ecf.

4 (a) (i) change in length / distance moved (accept "how much it expands")
 per unit / given temp rise OR equivalent

 (ii) large bulb OR thin / narrow bore / tube / capillary
 NOT thin / narrow thermometer

(b) (i) difference between the highest and lowest temperatures
 ignore reference to fixed points

 (ii) tube (sufficiently) long / not too short
 OR bore wide / not too thin
 OR little / not too much liquid / bulb
 NOT change liquid

(c) (i) idea of equal size divisions / expansion for equal temperature rises
 OR Δl / Δθ constant OR reference to l against θ graph straight line
 ignore 1 division = 1 °C

 (ii) uniform bore OR alcohol / liquid expands uniformly (with temp)

PhysicsAndMathsTutor.com
5 (a) heat/energy to raise/change temperature of 1 kg/1g/unit mass through 1°C/1K (mention of change of state scores zero)

(b) \[Q = mc\theta \] (for \(\theta \) accept \(t, T, \Delta \theta, \Delta t, \) or \(\Delta T \))
\[23800 = 0.93 \times c \times (41.3 - 13.1) \]
907.5 or 907 or 908 or 910 J/(kg °C) or J/(kg K) at least 2 sig. figs
(for unit in (b) and (c)(i) condone no brackets and extra solidus)

(c) 1212.9 or 1200 or 1210 or 1213 or 1214 J/(kg °C) or J/(kg K)

(ii) more energy lost (to surroundings)
(average) temperature is higher/initial temperature higher/no cooling time allowed/temperature rise is lower/time of heating may be longer/rate of heating may be lower

(d) insulate block/provide lid/cover with shiny foil
start & finish same amount below & above room temperature
get heater up to temperature before inserting
put oil in gap between heater & block

[Total: 10]