Q1. (a) Figure 1 shows the horizontal forces acting on a moving bicycle and cyclist.

(i) What causes force A?

Draw a ring around the correct answer.

- friction
- gravity
- weight

(1)

(ii) What causes force B?

...

(1)

(iii) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Figure 2 shows how the velocity of the cyclist changes during the first part of a journey along a straight and level road. During this part of the journey the force applied by the cyclist to the bicycle pedals is constant.

Figure 2
Describe how and explain, in terms of the forces A and B, why the velocity of the cyclist changes:

- between the points X and Y
- and between the points Y and Z, marked on the graph in Figure 2.
(b) (i) The cyclist used the brakes to slow down and stop the bicycle.
A constant braking force of 140 N stopped the bicycle in a distance of 24 m.
Calculate the work done by the braking force to stop the bicycle. Give the unit.
...
...
...
Work done = ...

(ii) Complete the following sentences.
When the brakes are used, the bicycle slows down. The kinetic energy of the bicycle ...
At the same time, the .. of the brakes increases.

(Total 13 marks)
Q2. A sky-diver jumps from a plane.

The sky-diver is shown in the diagram below.

![Diagram of a sky-diver with forces X and Y]

(a) Arrows X and Y show two forces acting on the sky-diver as he falls.

(i) Name the forces X and Y.

X ..

Y ..

(ii) Explain why force X acts in an upward direction.

..

..

(iii) At first forces X and Y are unbalanced.

Which of the forces will be bigger?

(iv) How does this unbalanced force affect the sky-diver?
(b) After some time the sky-diver pulls the rip cord and the parachute opens.

The sky-diver and parachute are shown in the diagram below.

After a while forces X and Y are balanced.

Underline the correct answer in each line below.

Force X has

\[\text{increased} / \text{stayed the same} / \text{decreased}. \]

Force Y has

\[\text{increased} / \text{stayed the same} / \text{decreased}. \]

The speed of the sky-diver will

\[\text{increase} / \text{stay the same} / \text{decrease}. \]

(3)

(c) The graph below shows how the height of the sky-diver changes with time.
(i) Which part of the graph, AB, BC or CD shows the sky-diver falling at a constant speed?

..

(1)

(ii) What distance does the sky-diver fall at a constant speed?

Distance m

(1)

(iii) How long does he fall at this speed?
(iv) Calculate this speed.

..
..
..

Speed m/s

(Total 14 marks)
Q3. (a) The diagram shows a steel ball-bearing falling through a tube of oil. The forces, \(L \) and \(M \), act on the ball-bearing.

What causes force \(L \)?

..

(1)

(b) The distance – time graph represents the motion of the ball-bearing as it falls through the oil.
(i) Explain, in terms of the forces, \(L \) and \(M \), why the ball-bearing accelerates at first but then falls at constant speed.

...
...
...
...
...
...

...

(ii) What name is given to the constant speed reached by the falling ball-bearing?

...
(iii) Calculate the constant speed reached by the ball-bearing.

Show clearly how you use the graph to work out your answer.

...
...
...

Speed = .. m/s

(2)
(Total 7 marks)
Q4. The apparatus shown is used to compare the motion of a coin with the motion of a piece of paper as they both fall.

(a) When the tube is filled with air the coin falls faster than the piece of paper. Why?

..
..
..

(1)

(b) The air in the tube is removed by the vacuum pump. The tube is turned upside down. State two ways in which the motion of the coin and piece of paper will change compared to when there was air in the tube.

1 ..
..
..

2 ..
..
..

(2) (Total 3 marks)
Q5. A cyclist travelling along a straight level road accelerates at 1.2 m/s^2 for 5 seconds. The mass of the cyclist and the bicycle is 80 kg.

(a) Calculate the resultant force needed to produce this acceleration.

Show clearly how you work out your answer and give the unit.

Resultant force = ...

(b) The graph shows how the velocity of the cyclist changes with time.

(i) Complete the following sentence.

The velocity includes both the speed and theof the cyclist.
(ii) Why has the data for the cyclist been shown as a line graph instead of a bar chart?

...
...
...

(1)

(iii) The diagrams show the horizontal forces acting on the cyclist at three different speeds. The length of an arrow represents the size of the force.

Which one of the diagrams, A, B or C, represents the forces acting when the cyclist is travelling at a constant 9 m/s?

...

Explain the reason for your choice.

...
...
...
...
...
...

(3) (Total 8 marks)
Q6. (a) A person takes their dog for a walk.

The graph shows how the distance from their home changes with time.

Which part of the graph, A, B, C or D, shows them walking the fastest?

Write your answer in the box.

Give the reason for your answer.

...
...

(2)

(b) During the walk, both the speed and the velocity of the person and the dog change.

How is velocity different from speed?

...
...

(1)
(Total 3 marks)
Q7. (a) The diagram shows a car at position X.

The handbrake is released and the car rolls down the slope to Y. The car continues to roll along a horizontal surface before stopping at Z. The brakes have not been used during this time.

(i) What type of energy does the car have at X?

..

(1)

(ii) What type of energy does the car have at Y?

..

(1)

(b) The graph shows how the velocity of the car changes with time between Y and Z.

(i) Which feature of the graph represents the negative acceleration between Y and Z?

..
(ii) Which feature of the graph represents the distance travelled between Y and Z?

.. (1)

(iii) The car starts again at position X and rolls down the slope as before. This time the brakes are applied lightly at Y until the car stops.

Draw on the graph another straight line to show the motion of the car between Y and Z. (2)

(c) Three students carry out an investigation. The students put trolley D at position P on a slope. They release the trolley. The trolley rolls down the slope and along the floor as shown in the diagram.

![Diagram of trolley on slope and floor]

The students measure the distance from R at the bottom of the slope to S where the trolley stops. They also measure the time taken for the trolley to travel the distance RS.

They repeat the investigation with another trolley, E.

Their results are shown in the table.

<table>
<thead>
<tr>
<th>Trolley</th>
<th>Distance RS in centimetres</th>
<th>Time taken in seconds</th>
<th>Average velocity in centimetres per second</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(i) Calculate the average velocity, in centimetres per second, between R and S for trolleys D and E. Write your answers in the table.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>65</td>
<td>2.1</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>2.6</td>
</tr>
</tbody>
</table>

..
..
..

(3)

(ii) Before the investigation, each student made a prediction.

• Student 1 predicted that the two trolleys would travel the same distance.
• Student 2 predicted that the average velocity of the two trolleys would be the same.
• Student 3 predicted that the negative acceleration of the two trolleys would be the same.

Is each prediction correct?

Justify your answers.

..
..
..
..
..
..
..
..

(3)

(Total 12 marks)