Q1.

6	Strontium-90 decays with the emission of a β -particle to form Yttrium-90. The reaction is represented by the equation				
		$^{90}_{38}$ Sr $\rightarrow ^{90}_{39}$ Y + $^{0}_{-1}$ e + 0.55 MeV.			
	The	decay constant is 0.025 year ⁻¹ .			
	(a)	Suggest, with a reason, which nucleus, $^{90}_{38} Sr$ or $^{90}_{39} Y$, has the greater binding energy.			
		[2]			
	(b)	Explain what is meant by the decay constant.			
		[2]			

(c) /	At the time of purchase of a Strontium-90 source,	the activity is 3.7×10 ⁶ Bq.
X	(i) Calculate, for this sample of strontium,	
	1. the initial number of atoms,	
	number :	=[3]
	2. the initial mass.	[0]
	mass	= kg [2]
	Determine the activity A of the sample 5.0 yearswer as a fraction of the initial activity A ₀ . The	
	ratio	=[2]

Fig. 8.1 shows the variation with nucleon number of the binding energy per nucleon of a nucleus.

Fig. 8.1

(a) On Fig. 8.1, mark with the letter S the position of the nucleus with the greatest stability. [1]

(b) One possible fission reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{144}_{56}$ Ba + $^{90}_{36}$ Kr + $^{21}_{0}$ n.

(i) On Fig. 8.1, mark possible positions for

1. the Uranium-235 $\binom{235}{92}$ U) nucleus (label this position U),

2. the Krypton-90 (90 Kr) nucleus (label this position Kr). [1]

(ii) The binding energy per nucleon of each nucleus is as follows.

 $^{235}_{92}$ U: 1.2191×10^{-12} J $^{144}_{56}$ Ba: 1.3341×10^{-12} J $^{90}_{36}$ Kr: 1.3864×10^{-12} J

	Use these data to calculate	036
	 the energy release in this fission reaction (give your answer to three significant figures), 	
	energy =	
	mass =kg [2]	
(iii)	Suggest why the neutrons were not included in your calculation in (ii).	
	[1]	

Q3.

7 The isotope Manganese-56 decays and undergoes β-particle emission to form the stable isotope Iron-56. The half-life for this decay is 2.6 hours. Initially, at time t = 0, a sample of Manganese-56 has a mass of 1.4 μg and there is no Iron-56.

(a) Complete Fig. 7.1 to show the variation with time t of the mass of Iron-56 in the sample for time t = 0 to time t = 11 hours.

Fig. 7.1

[2]

(b) For the sample of Manganese-56, determine

(i) the initial number of Manganese-56 atoms in the sample,

number =[2]

(ii) the initial activity.

activity = Bq [3]

(c)	Det	termine the time at which the ratio
		mass of Iron-56 mass of Manganese-56
	is e	equal to 9.0.
		time = hours [2]
Q4.		
6	(a)	Define the <i>decay constant</i> of a radioactive isotope.
		[2]
	(b)	Strontium-90 is a radioactive isotope having a half-life of 28.0 years. Strontium-90 has a density of $2.54\mathrm{gcm^{-3}}$.
		A sample of Strontium-90 has an activity of $6.4 \times 10^9\text{Bq}$. Calculate
		(i) the decay constant λ , in s ⁻¹ , of Strontium-90,
		$\lambda = \dots s^{-1}$ [2]

(ii)	the mass of Strontium-90 in the sample,
	mass =g [4]
(iii) the volume of the sample.
	volume =cm ³ [1]
c)	By reference to your answer in (b)(iii) , suggest why dust that has been contaminated with Strontium-90 presents a serious health hazard.
	3

Q5.

A	positron will interact with an electron to form two γ-ray photons.
	$^{0}_{+1}e + ^{0}_{-1}e \rightarrow 2\gamma$
	suming that the kinetic energy of the positron and the electron is negligible when the eract,
(a	suggest why the two photons will move off in opposite directions with equal energies,
calc	ાું culate the energy, in MeV, of one of the γ-ray photons.
cald	
cald	
cald	
cald	culate the energy, in MeV, of one of the γ-ray photons.

9	(a)	A sample of a radioactive isotope contains N nuclei at time t . At time $(t + \Delta t)$, it contains $(N - \Delta N)$ nuclei of the isotope.	E
		For the period Δt , state, in terms of N , ΔN and Δt ,	
		(i) the mean activity of the sample,	
		activity =[1]	
		(ii) the probability of decay of a nucleus.	
		probability =[1]	
	(b)	A cobalt-60 source having a half-life of 5.27 years is calibrated and found to have an activity of 3.50×10^5 Bq. The uncertainty in the calibration is $\pm2\%$.	
		Calculate the length of time, in days, after the calibration has been made, for the stated activity of 3.50×10^5 Bq to have a maximum possible error of 10%.	
		time = days [4]	

8	A st	meson is a sub-atomic particle. tationary π^0 meson, which has mass 2.4×10^{-28} kg, decays to form two γ-ray photons. In nuclear equation for this decay is	Ex
		$\pi^0 \longrightarrow \gamma + \gamma$.	
	(a)	Explain why the two γ-ray photons have the same energy.	
		[2]	
	(b)	Determine, for each γ-ray photon,	
		(i) the energy, in joule,	
		energy = J [2]	
(ii)	the wavelength,	
		wavelength = m [2]	

(iii)	the momentum.
	momentum = Ns [2]
Q8.	
8	Americium-241 is an artificially produced radioactive element that emits α -particles. A sample of americium-241 of mass 5.1 μ g is found to have an activity of 5.9 \times 10 ⁵ Bq.
	(a) Determine, for this sample of americium-241,
	(i) the number of nuclei,
	number =[2]
	(ii) the decay constant,
	decay constant = s ⁻¹ [2]

(iii) the half-life, in years.

half-life = years [2]

(b) Another radioactive element has a half-life of approximately 4 hours. Suggest why measurement of the mass and activity of a sample of this element is not appropriate for the determination of its half-life.

Q9.

(a) The variation with nucleon number A of the binding energy per nucleon B_{E} of nuclei is shown in Fig. 8.1.

Fig. 8.1

On Fig. 8.1, mark the approximate positions of

(i) iron-56 (label this point Fe),

[1]

(ii) zirconium-97 (label this point Zr),

[1]

(iii) hydrogen-2 (label this point H).

[1]

(b)	(i)	State what is meant by <i>nuclear fission</i> .	
			[2]
	(ii)	By reference to Fig. 8.1, explain how fission is energetically possible.	[4]

			[2]
			[-1
10.			
8	(a)	State what is meant by the binding energy of a nucleus.	
		>	[2]
	(b)	Show that the energy equivalence of 1.0 u is 930 MeV.	

(c) Data for the masses of some particles and nuclei are given in Fig. 8.1.

	mass/u
proton	1.0073
neutron	1.0087
deuterium (2H)	2.0141
zirconium (97Zr)	97.0980

Fig. 8.1

Use data from Fig. 8.1 and information from (b) to determine, in MeV,

(i) the binding energy of deuterium,

binding energy = MeV [2]

(ii) the binding energy per nucleon of zirconium.

Exam U

binding energy per nucleon = MeV [3]

Q11.

9	(a)	(i)	State what is meant by the <i>decay constant</i> of a radioactive isotope.	Fi
				U
			[2]	
		(ii)	Show that the decay constant λ and the half-life $t_{\frac{1}{2}}$ of an isotope are related by the expression	
			$\lambda t_{\frac{1}{2}} = 0.693.$	

[3]

(b) In order to determine the half-life of a sample of a radioactive isotope, a student measures the count rate near to the sample, as illustrated in Fig. 9.1.

Fig. 9.1

Initially, the measured count rate is 538 per minute. After a time of 8.0 hours, the measured count rate is 228 per minute.	For xamir Use
Use these data to estimate the half-life of the isotope.	.0.
half-life = hours [3]	
Hair-life = Hours [5]	
The accepted value of the half-life of the isotope in (b) is 5.8 hours. The difference between this value for the half-life and that calculated in (b) cannot be explained by reference to faulty equipment.	
Suggest two possible reasons for this difference.	
1	
2	
[2]	
	measured count rate is 228 per minute. Use these data to estimate the half-life of the isotope. half-life =

Q12.

	he element strontium has at least otope has a half-life of 52 days.	16 isotopes. One of these isotopes is	strontium-89. This
(a	State what is meant by isotope	S.	
	6 20.00 20 40 40 40 40 40 40 40 40 40 40 40 40 40		. 14
(t	 Calculate the probability per se 	cond of decay of a nucleus of strontiur	m-89.
		probability =	s ⁻¹ [3]
	found to be 7.4 × 10 ⁶ Bq. Determine, for the strontium-89 (i) the activity,	source at the time that it was prepared	1,
		activity =	Bq [2]
	(ii) the mass of strontium-89.		
		mass =	g [2]

Q13.

	***************************************		[
(b)	One nuclear reaction that takes place equation	e in the core of the Sun is	represented by the
	²H + ¹H →	· ³ ₂ He + energy.	
	Data for the nuclei are given in Fig. 8.1		
		mass/u	
	proton 1H	1.00728	
	deuterium ² ₁ H	2.01410	
	helium ³ ₂ He	3.01605	
	Fig	8.1	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (Calculate the energy, in joules, release	ed in this reaction.	
i) (ed in this reaction. energy =	

Q14.

						[2]
(b)	An equation for o					
	Data for the mass		¹ ⁴ N → ¹ are given			
				mass/u		
		proton helium-4 nitrogen-14 oxygen-17	1p 4He 14N 170	1.00728 4.00260 14.00307 16.99913		
			Fig. 8.1			
(i)	Calculate the m					
	Calculate the file	ass change, in	u, associa	ated with this read	ction.	
	Culculate the mi	ass change, in	u, associa	ated with this read	ction.	
	Culculate the III	ass change, in	u, associa	ated with this read	ction.	
	Culculate the III			ated with this read		u [2]
(ii)	Calculate the er		mass cha	inge =		u [2]
(ii)			mass cha	inge =		u [2]
(ii)			mass cha	inge =		u [2

(iii)		Suggest and explain why, for this reaction to occur, the helium-4 nucleus must have a minimum speed.
		[2]
Q15.		
8 (a)	Define the term radioactive <i>decay constant</i> .
		[2]
(b)	State the relation between the activity A of a sample of a radioactive isotope containing N atoms and the decay constant λ of the isotope.
		[1]
(c)	Radon is a radioactive gas with half-life 56 s. For health reasons, the maximum permissible level of radon in air in a building is set at 1 radon atom for every 1.5×10^{21} molecules of air. 1 mol of air in the building is contained in $0.024\mathrm{m}^3$.
		Calculate, for this building,
		(i) the number of molecules of air in 1.0 m ³ ,
		number =

(i	i) th	ne m	naximum permissible number of radon atoms in 1.0 m ³ of air,
			number =
(iii)) th	e m	naximum permissible activity of radon per cubic metre of air.
	2.1.2		Comment of the commen
			activity =Bq
			[5]
Q16.			
	α-pa	rticle	opes Radium-224 ($^{224}_{88}$ Ra) and Radium-226 ($^{226}_{88}$ Ra) both undergo spontaneous e decay. The energy of the α -particles emitted from Radium-224 is 5.68 MeV and dium-226, 4.78 MeV.
	(a)	(i)	State what is meant by the <i>decay constant</i> of a radioactive nucleus.
			[2]
		(ii)	Suggest, with a reason, which of the two isotopes has the larger decay constant.
			roa

(b)	Radium-224 has a half-life of 3.6 days.	
	i) Calculate the decay constant of Radium-224, stating the unit in which it is measured.	
	decay constant =[2] i) Determine the activity of a sample of Radium-224 of mass 2.24 mg.	
(c)	activity =	Use
	number of half-lives =[2]	

Q17.

7 Fig. 7.1 illustrates the variation with nucleon number A of the binding energy per nucleon E of nuclei.

Fig. 7.1

(a) (i) Explain what is meant by the binding energy of a nucleus.

		300000000000000000000000000000000000000	commensus	1310000000000000	 **************	311001331001011111
	*************					***************************************
30000	 				 	[2]

- (ii) On Fig. 7.1, mark with the letter S the region of the graph representing nuclei having the greatest stability. [1]
- (b) Uranium-235 may undergo fission when bombarded by a neutron to produce Xenon-142 and Strontium-90 as shown below.

$$^{235}_{92}$$
U + $^{1}_{0}$ n \rightarrow $^{142}_{54}$ Xe + $^{90}_{38}$ Sr + neutrons

(i) Determine the number of neutrons produced in this fission reaction.

(ii) Data for binding energies per nucleon are given in Fig. 7.2.

isotope	binding energy per nucleon / MeV
Uranium-235	7.59
Xenon-142	8.37
Strontium-90	8.72

Fig. 7.2

Calculate

1. the energy, in MeV, released in this fission reaction,

2. the mass equivalent of this energy.

Q18.

иe

A sample of Uranium-234 of mass 2.65 μ	a is found to have an activity of 604 Bg.
a) Calculate, for this sample of Uraniun	
(i) the number of nuclei,	. 201,
(i) the number of flucies,	
	number =[2]
(ii) the decay constant,	
	decay constant = s ⁻¹ [2]
iii) the half-life in years.	
	13.100
	half-life = years [2]

(b)	Suggest why the activity of the Uranium-234 appears to be constant.	C
	[1]	
(c)	Suggest why a measurement of the mass and the activity of a radioactive isotope is not an accurate means of determining its half-life if the half-life is approximately one hour.	
	[1]	h

Q19.

7 (a) Explain what is meant by the binding energy of a nucleus.

(b) Fig. 7.1 shows the variation with nucleon number (mass number) A of the binding energy per nucleon $E_{\rm B}$ of nuclei.

Fig. 7.1

On	ne particular fission reaction may be represented by the nuclear equation	
	$^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ Kr + 3^{1}_{0} n.	
(i)	On Fig. 7.1, label the approximate positions of	
	1. the uranium $\binom{235}{92}$ U) nucleus with the symbol U,	
	 the barium (¹⁴¹₅₆Ba) nucleus with the symbol Ba, 	
	3. the krypton $\binom{92}{36}$ Kr) nucleus with the symbol Kr.	[2
(ii)	The neutron that is absorbed by the uranium nucleus has very little kinet Explain why this fission reaction is energetically possible.	ic energy.
		[2
Barini	m-141 has a half-life of 18 minutes. The half-life of Krynton-92 is 3.0 s	
In the nuclei	m-141 has a half-life of 18 minutes. The half-life of Krypton-92 is 3.0 s. e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. hate the time taken after the fission of the sample of uranium for the ratio	krypton
In the nuclei	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced.	krypton
In the nuclei	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio number of Barium-141 nuclei	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton
In the nuclei Estim	e fission reaction of a mass of Uranium-235, equal numbers of barium and if are produced. In the fission of the sample of uranium for the ratio $\frac{\text{number of Barium-141 nuclei}}{\text{number of Krypton-92 nuclei}}$	krypton

	2H -	$+ {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + Q$	
where Q = 17.7	MeV.		
Binding energies	s per nucleon are	e shown in Fig. 8.1.	
		binding energy per nucleon /MeV	
	² H	1.12	
	1 ₀ n	12.7	
	⁴ ₂ He	7.07	
		Fig. 8.1	
(a) Suggest wh	y binding energy	per nucleon for the neutron is not quot	ed.
		g, of a helium ⁴ / ₂ He nucleus.	ed.
Calculate the n	nass defect, in k	g, of a helium ⁴ He nucleus.	kg

M21	ı
UZ I	١.

, ,	State what is meant by the decay constant of a radioactive isotope.	***************************************
(b)	Show that the decay constant λ is related to the half-life $t_{\underline{j}}$ by the expression	[2]
	$\lambda t_{\frac{1}{2}} = 0.693.$	
		[3]
(c) (Cobalt-60 is a radioactive isotope with a half-life of 5.26 years (1.66×10^8 s).	
P	a cobalt-60 source for use in a school laboratory has an activity of $1.8 \times 10^5 \mathrm{Bq}$.	
C	Calculate the mass of cobalt-60 in the source.	

1-1		power stations, nuclear fission is used as a source of energy.	Ex
(a)	State	e what is meant by <i>nuclear fission</i> .	ľ
	1101101		
	2101603	[2]	
(b)	be a Com	nuclear fission reaction produces neutrons. In the power station, the neutrons may bsorbed by rods made of boron-10. In the nuclear equation for the absorption of a single neutron by a boron-10 eus with the emission of an α -particle.	
		¹⁰ ₅ B + → ₃ Li + [3]	l
(c)		gest why, when neutrons are absorbed in the boron rods, the rods become hot as a lt of this nuclear reaction.	

			- 1-
		[3]	
	******	[3]	
		[3]	
Th	ne isot	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β -decay to form sulfur-33 ($^{33}_{16}$ S), which	
Th	able.		
Th sta Th	able.	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β -decay to form sulfur-33 ($^{33}_{16}$ S), which	
Th sta Th	able. ne half	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β-decay to form sulfur-33 ($^{33}_{16}$ S), which -life of phosphorus-33 is 24.8 days. Define radioactive <i>half-life</i> .	
Th sta Th	able. ne half	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β -decay to form sulfur-33 ($^{33}_{16}$ S), which -life of phosphorus-33 is 24.8 days.	
Th sta Th	able. ne half	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β-decay to form sulfur-33 ($^{33}_{16}$ S), which -life of phosphorus-33 is 24.8 days. Define radioactive <i>half-life</i> .	is
Th sta Th	able. ne half	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β-decay to form sulfur-33 ($^{33}_{16}$ S), which -life of phosphorus-33 is 24.8 days. Define radioactive <i>half-life</i> .	is
Th sta Th	able. ne half	tope phosphorus-33 ($^{33}_{15}$ P) undergoes β-decay to form sulfur-33 ($^{33}_{16}$ S), which life of phosphorus-33 is 24.8 days. Define radioactive <i>half-life</i> . Show that the decay constant of phosphorus-33 is 3.23 × 10 ⁻⁷ s ⁻¹ .	is

(b)	A pure sample of phosphorus-33 has an initial activity of 3.7 × 10 ⁶ Bq.	
	Calculate	
	(i) the initial number of phosphorus-33 nuclei in the sample,	
	number =[2]	
	(ii) the number of phosphorus-33 nuclei remaining in the sample after 30 days.	
	number =[2]	
(c)	After 30 days, the sample in (b) will contain phosphorus-33 and sulfur-33 nuclei. Use your answers in (b) to calculate the ratio	For caminer
	number of phosphorus-33 nuclei after 30 days	Use
	number of sulfur-33 nuclei after 30 days	
	ratio =[2]	

Dodor '	222 when found in etmospheric air can present a health harvard Cafet.
	222, when found in atmospheric air, can present a health hazard. Safety measures be taken when the activity of radon-222 exceeds 200 Bq per cubic metre of air.
(a) (i)	Define radioactive decay constant.
	[2]
(ii)	Show that the decay constant of radon-222 is $2.1 \times 10^{-6} \text{s}^{-1}$.
	[1]
) A volu	
	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules.
Calcul	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules. ate the ratio number of air molecules in 1.0 m ³ of atmospheric air
Calcul	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules. ate the ratio number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air
Calcul	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules. ate the ratio number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air
Calcul	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules. ate the ratio number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air
Calcul	me of 1.0 m ³ of atmospheric air contains 2.5 × 10 ²⁵ molecules. ate the ratio number of air molecules in 1.0 m ³ of atmospheric air number of radon-222 atoms in 1.0 m ³ of atmospheric air

8	When a neutron is captured by a uranium-235 nucleus, the outcome may be represented by
	the nuclear equation shown below.

For Examiner: Use

$$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \longrightarrow ^{95}_{42}\text{Mo} + ^{139}_{57}\text{La} + x^{1}_{0}\text{n} + 7^{~0}_{-1}\text{e}$$

(a) (i) Use the equation to determine the value of x.

x =[1]

(ii) State the name of the particle represented by the symbol $_{-1}^{0}$ e.

[1]

(b) Some data for the nuclei in the reaction are given in Fig. 8.1.

		mass/u	binding energy per nucleon /MeV
uranium-235	(²³⁵ ₉₂ U)	235,123	
molybdenum-95	(⁹⁵ ₄₂ Mo)	94.945	8.09
lanthanum-139	(¹³⁹ ₅₇ La)	138,955	7.92
proton	(¹ ₁ p)	1.007	
neutron	$\binom{1}{0}$ n)	1.009	

Fig. 8.1

Use data from Fig. 8.1 to

(i) determine the binding energy, in u, of a nucleus of uranium-235,

binding energy = u [3]

	(ii)	show that the binding energy per nucleon of a nucleus of uranium-235 is 7.18	MeV.	For Examine. Use
(c)		e kinetic energy of the neutron before the reaction is negligible. e data from (b) to calculate the total energy, in MeV, released in this reaction.	[3]	
		energy = Me	eV [2]	

Q26.

8 (a) State what is meant by nuclear binding energy.

For Examiner's Use

(b) The variation with nucleon number A of the binding energy per nucleon B_{E} is shown in Fig. 8.1.

Fig. 8.1

When uranium-235 ($^{235}_{92}$ U) absorbs a slow-moving neutron, one possible nuclear reaction is

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{95}_{42}$ Mo + $^{139}_{57}$ La + 2^{1}_{0} n + 7^{0}_{-1} β + energy.

(i) State the name of this type of nuclear reaction.

.....[1]

- (ii) On Fig. 8.1, mark the position of
 - 1. the uranium-235 nucleus (label this position U), [1]
 - 2. the molybdenum-95 (95Mo) nucleus (label this position Mo), [1]
 - the lanthanum-139 (¹³⁹₅₇La) nucleus (label this position La).

(iii) The masses of some particles and nuclei are given in Fig. 8.2.

	mass/u
β-particle	5.5 × 10-4
neutron	1.009
proton	1.007
uranium-235	235.123
molybdenum-95	94.945
lanthanum-139	138.955

Fig. 8.2

Calculate, for this reaction,

1. the change, in u, of the rest mass,

change in mass =	 u	[2]
change in mass =	 u	14	

2. the energy released, in MeV, to three significant figures.

Q27.

For Examiner's Use

		$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n + energy.$
(b) A mass of 1.2g of uranium-235 undergoes this nuclear reaction in a very short tim (a few nanoseconds). (i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed. number =	Bariu	m-141 has a half-life of 18 minutes and a decay constant of 6.4 × 10 ⁻⁴ s ⁻¹ .
(b) A mass of 1.2 g of uranium-235 undergoes this nuclear reaction in a very short tim (a few nanoseconds). (i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed. number =	(a) S	State what is meant by decay constant.
(i) Calculate the number of barium-141 nuclei that are present immediately after the reaction has been completed. number =		
reaction has been completed. number =		
(ii) Using your answer in (b)(i), calculate the total activity of the barium-141 and th	(i)	
(ii) Using your answer in (b)(i), calculate the total activity of the barium-141 and th		
		number =[2
	(ii)	Using your answer in (b)(i) , calculate the total activity of the barium-141 and the
	(ii)	Using your answer in (b)(i) , calculate the total activity of the barium-141 and the
	(ii)	Using your answer in (b)(i) , calculate the total activity of the barium-141 and the

10 (a)	Explain what is meant by the binding energy of	a nucleus.	
			[2]
(b)	Data for the masses of some particles are given	in Fig. 10.1.	
		mass/u	
	500.00		
	proton neutron tritium (³ H) nucleus polonium (²¹⁰ Po) nucleus	1.00728 1.00867 3.01551 209.93722	
	polonium (841 o) nucleus		
	Fig. 10.1		
	The energy equivalent of 1.0 u is 930 MeV.		
(i) (Calculate the binding energy, in MeV, of a tritiun	n (³ H) nucleus.	
	binding energy =		MeV [3]
(ii) 7	he total mass of the separate nucleons that ma	ike up a polonium-210 (²¹⁰ P	o) nucleus is
(Calculate the binding energy per nucleon of pol-	onium-210.	
	binding energy per nucleon =		MeV [3]

(c)	One possible fission reaction is
	$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$.
	By reference to binding energy, explain, without any calculation, why this fission reaction is energetically possible.
	[2
Q29	
9	Some water becomes contaminated with radioactive iodine-131 ($^{131}_{53}$ I). The activity of the iodine-131 in 1.0 kg of this water is 460 Bq. The half-life of iodine-131 is 8.1 days.
	(a) Define radioactive half-life.
	(b) (i) Calculate the number of iodine-131 atoms in 1.0 kg of this water.
	number =[

(i	i) An amount of 1.0 mol of water has a mass of 18g.
	Calculate the ratio
	number of molecules of water in 1.0 kg of water
	number of atoms of iodine-131 in 1.0 kg of contaminated water
	ratio =[2]
	Tallo =[2]
(c)	An acceptable limit for the activity of iodine-131 in water has been set as 170 Bq kg ⁻¹ .
	Calculate the time, in days, for the activity of the contaminated water to be reduced to this acceptable level.
	time =days [3]
	time =days [3]
Q30.	

9	One	likely means by which n	nuclear fusion may be a	achieved on a p	practical scale is the D-T reaction
	(a)	State what is meant by	nuclear fusion.		
					[1]
	(b)	In the D-T reaction, a helium-4 (⁴ ₂ He) nucleus			a tritium (³H) nucleus to form a n is
			$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He +$	¹ ₀ n + energy	
		Some data for this read	tion are given in Fig. 9	.1.	
		9		mass/u	
			deuterium (² H)	2.01356	
			tritium (³ H)	3.01551	
			helium-4 (⁴ He)	4.00151	
			neutron (1n)	1.00867	
			Fig. 9	9.1	-
			ı ıg	201	
(i) (Calculate the energy, in	MeV equivalent to 1	00u Explain	vour working
,	,	odiodiato dio onorgy, in	i mov, oquivaloni to i	.ooa. Explain	your working.
			oporqu		MoV [9]
					MeV [3]
(i		Use data from Fig. 9.1 D-T reaction.	and your answer in	(i) to determin	ne the energy released in this
			energy	/ =	MeV [2]

(ii	Suggest why, for the D-T reaction to take place, the temperature of the deuterium and the tritium must be high.	
	[2]	
Q31	•	
9	During the de-commissioning of a nuclear reactor, a mass of 2.5×10^6 kg of steel is found to be contaminated with radioactive nickel-63 ($^{63}_{28}$ Ni). The total activity of the steel due to the nickel-63 contamination is 1.7×10^{14} Bq.	
	(a) Calculate the activity per unit mass of the steel.	
	activity per unit mass = Bqkg ⁻¹ [1]	

(b)	con Nicl	ecial storage precautions need to be taken when the activity per unit mass due to tamination exceeds $400\mathrm{Bqkg^{-1}}$. kel-63 is a β -emitter with a half-life of 92 years. The maximum energy of an emitted β -particle is 0.067 MeV.
	(i)	Use your answer in (a) to calculate the energy, in J, released per second in a mass of 1.0 kg of steel due to the radioactive decay of the nickel.
	(ii)	use your answer in (i) to suggest, with a reason, whether the steel will be at a high
		temperature.
		[1]
(iii)		e your answer in (a) to determine the time interval before special storage precautions the steel are not required.
		time = years [3]

