Questions on Electric Fields MS

1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B.

\[\text{Oil drop} \hspace{2cm} \text{A} \hspace{2cm} \text{B} \]

The oil drop has a mass \(9.79 \times 10^{-15}\) kg. The potential difference between the plates is 5000 V and plate B is at a potential of 0 V. Is plate A positive or negative?

Negative (1)

Draw a labelled free-body force diagram which shows the forces acting on the oil drop. (You may ignore upthrust).

\[qE / \text{electric force} \]

\[mg / \text{gravitational force / weight} \]

(2)

Calculate the electric field strength between the plates.

\[E = \frac{5000V}{2.50 \times 10^{-2} m} \]

Electric field strength = \(2 \times 10^5\) V m\(^{-1}\) [OR N c\(^{-1}\)] (1)

(2 marks)

Calculate the magnitude of the charge \(Q\) on the oil drop.

\[Mg = qE: \text{use of equation} \]

Charge = \(4.8 \times 10^{-19}\) C (1)

(3 marks)

How many electrons would have to be removed from a neutral oil drop for it to acquire this charge?

3 (1)

[Total 8 marks]

2. Calculation of potential difference:

Use of \(E = V/d\) [\(d\) in m or cm] (1)

\(V = 90\) kV (1)

Calculation of maximum kinetic energy:

Use of \(E = qV\) e.c.f. value of \(V\) \(1.4 \times 10^{-14}\) (J) (1)

[e.c.f. their \(V \times 1.6 \times 10^{-19}\)] (1)

4
Maximum speed of one of these electrons:

Use of k.e. = \(\frac{1}{2} m u^2 \) with \(m = 9.1 \times 10^{-31} \) kg \((1) \)

[Full e.c.f. their k.e. possible; make sure \(v \) is speed term]

\(= 1.8 \times 10^8 \) m s\(^{-1} \) [u.e. but only once] \((1) \)

Diagram:

\[\begin{array}{c}
\text{At least 3 radial lines touching object} \\
\text{Direction towards electron} \\
\text{Expression for electric potential } V:
\end{array} \]

\[V = \frac{1}{4\pi \varepsilon_0} \frac{1.6 \times 10^{-19}}{r} \quad \text{OR} \quad \frac{e}{4\pi \varepsilon_0} \frac{r}{r} \quad \text{OR} \quad \frac{1.44 \times 10^{-9}}{r} \]

[not \(k \) unless defined] \[\left[\text{Not} \frac{Q}{4\pi \varepsilon_0 r} \text{ unless } Q \text{ defined} \right] \]

[With or without “–” sign] \((1) \)

3. Alpha particle: diagram

Curving path between plates

Towards 0 V plate

Emerging from plates and carrying on straight

Calculation

Electric field = \(\frac{2000 \text{ V}}{10 \times (10^{-3}) \text{ m}} \)

Substitution

Force = \(EQ \)

\(= \left(\frac{2000}{10 \times 10^{-3}} \right) \text{Vm}^{-1} \times (2) \times 1.6 \times 10^{-19} \text{ C} \)

Substitution [ecf their \(E \)]

\(= 6.4 \times 10^{-14} \text{ N} \)

Correct answer
4. **Diagram**

Electric pattern:
- Straight, parallel, reasonably perpendicular to plates and equispaced [Minimum 3 lines] (1)
- Correct direction labelled on one line [Downwards arrow] (1) 2

Equipotential lines:
- Any two correct equipotentials with any labelling to identify potentials (rather than field lines) (1) 1
 - [Arrows on electric field lines – none on equipotential being sufficient labelling]

Force

\[E = \frac{3000 V}{25 \times (10^{-3}) \text{m}} \] [Correct substitution] (1)

Use of \(F = Ee \) even if value of “e” is incorrect (1)

\(F = 120 \times (10^3) \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{ C} \)

\[= 1.9 \times 10^{-14} \text{ (N)} \] (1) 3

Graph

Straight horizontal line [Even if extending beyond 25 mm] (1)

Value of \(F \) marked [e.e.f. their value] provided graph begins on force axis and is marked at this point (1) 2

Speed

Use (1)

\[eV = \frac{1}{2} \text{ mv}^2 \]

\[v^2 = 2 \text{ eV/m} \]

\[Fd = \frac{1}{2} \text{ mv}^2 \]

\[v^2 = 2Fd/m \]

Substitution (1)

\[v^2 = \frac{2 \times 1.6 \times 10^{-19} \text{ (C)} \times 3000 \text{ (V)}}{9.11 \times 10^{-31} \text{ kg}} \]

\[= \frac{1.92 \times 10^{-14} \text{ (N)}}{9.11 \times 10^{-31} \text{ kg}} \times 25 \times 10^{-3} \text{ m} \]

\[= \frac{2 \times 1.92 \times 10^{-14} \text{ N} \times 25 \times 10^{-3} \text{ m}}{9.11 \times 10^{-31} \text{ kg}} \]

Answer: \(V = 3.2 \times 10^7 \text{ ms}^{-1} \) (1) 3

[If \(F = 2 \times 10^{-14} \text{ N}, \) then \(V = 3.3 \times 10^7 \text{ ms}^{-1} \)]

5. **Explanation**

Electrons are transferred from / move from/ rubbed off the rod to the duster (1)

Same amount of charge on each/duster becomes negative (1) 2

Polystyrene

Polystyrene is an insulator / non conductor [NOT bad or poor conductor] (1)

Prevents loss of charge/rod discharging/prevents conduction or charge low from metal plate (1) 2

Reading on balance
Quality of written communication (1)

Any three from:

- Reading increases (1)
- There is a (mutual) force of repulsion/like charges repel/rods (they) repel (1)
- Because by Coulomb’s law/inverse square law \(\frac{kQ_1Q_2}{r^2} / \frac{1}{r^2} \) as \(r \) decreases force must increase (1)
- Reading increases at a greater rate/more rapidly [but accept if say “much more”] as distance reduces/when closer (1)

Max 3

6. (a) Direction of field lines
Downwards (1)

(b) (i) Calculation of force
Use of \(V/d \) i.e. 250 V/0.05 m [if 5 used mark still awarded] (1)
Use of \(\frac{V}{d} \) \(e \) [Mark is for correct use of \(1.6 \times 10^{-19} \) C] (1)
\[= 8.0 \times 10^{-16} \text{ N} \] (1)

(ii) Direction and explanation
(Vertically) upwards / towards AB (1)
No (component of) force in the horizontal direction OR because (1)
(the force) does no work in the horizontal direction

(c) Calculation of p.d.
Use of \(\Delta E_K = \frac{1}{2} mv^2 / \frac{1}{2} \times 9.11 \times 10^{-31} \text{ (kg)} \times (1.3 \times 10^7)^2 \) (1)
Use of \(\frac{Ve}{V} \times 1.6 \times 10^{-19} \text{ (C)} \) (1)
\[= 480 \text{ V} \] (1)

(d) Beam of electrons
Diagram showing:
Spreading out from one point (1)
fastest electrons labelled (1)

[4.2 (4.19) \times 10^7 \text{ (m s}^{-1}) \), no ue] to at least 2 sf (1)

7. (a) Electron speed
Substitution of electronic charge and 5000V in \(eV \) (1)
Substitution of electron mass in \(\frac{1}{2} mv^2 \) (1)
Correct answer \[4.2 \times 10^7 \text{ (m s}^{-1}) \), no ue] to at least 2 sf (1)

[11]
Example of answer:
\[v^2 = \frac{(2 \times 1.6 \times 10^{-19} \text{C} \times 5000 \text{ V})}{(9.11 \times 10^{-31} \text{ kg})} = 1.76 \times 10^{15} \]
\[v = 4.19 \times 10^7 \text{ m s}^{-1} \]

(b) (i) **Value of \(E \)**

Correct answer \[2.80 \times 10^4 \text{ V m}^{-1}/\text{N C}^{-1} \text{ or } 2.80 \times 10^2 \text{ V cm}^{-1}\] \(\text{(1)} \)

Example of answer:
\[E = \frac{V}{d} = \frac{1400 \text{ V}}{5.0 \times 10^{-2}} = 28000 \text{ V m}^{-1} \]

(ii) **Value of force \(F \)**

Correct answer \[4.5 \times 10^{-15} \text{ N}, \text{ ecf for their } E\] \(\text{(1)} \)

Example of answer:
\[F = Ee = 2.80 \times 10^4 \text{ V m}^{-1} \times 1.6 \times 10^{-19} \text{ C} = 4.48 \times 10^{-15} \text{ N} \]

(c) **Calculation of \(h \)**

See \(a = \text{their } F / 9.11 \times 10^{-31} \text{ kg}\) \(\text{(1)} \)

\[\rightarrow a = 4.9 \times 10^{15} \text{ m s}^{-2} \]

See \(t = 12 \times 10^{-2} \) m / \(4 \times 10^7 \) m s\(^{-1}\) (or use \(4.2 \times 10^7 \) m s\(^{-1}\)) \(\text{(1)} \)

\[t = \frac{d}{v}, \text{ with } d = \text{plate length}; 12 \text{ cm} \]

\[\rightarrow t = 3.0 \times 10^{-9} \text{ s}, \text{ or } 2.86 \times 10^{-9} \text{ s} \]

See substitution of \(a \) and \(t \) values **arrived at by above methods** into \(\frac{1}{2} at^2 \) \(\text{(1)} \)

Correct answer \[h = 0.020 \text{ m} – 0.022 \text{ m} \] \(\text{(1)} \)

[Full ecf for their value of \(F \) if methods for \(a \) and \(t \) correct and their \(h \leq 5.0 \text{cm} \)]

Example of answer:
\[h = \frac{1}{2} a t^2 \]
\[= \frac{1}{2} \times 4.9 \times 10^{15} \text{ m s}^{-2} \times (2.86 \times 10^{-9} \text{ s})^2 \]
\[= 2.0 \times 10^{-2} \text{ m} \]

(d) (i) **Path A of electron beam**

Less curved than original \(\text{(1)} \)

(ii) **Path B of electron beam**

More curved than original, curve starting as beam enters field [started by \(H \) of the Horizontal plate label] \(\text{(1)} \)

[For both curves:

- ignore any curvature beyond plates after exit
- new path must be same as original up to plates]

[No marks if lines not identified, OK if either one is labelled]
8. Draw diagrams to represent
 (i) the gravitational field near the surface of the Earth,
 [Diagram not provided]

 Direction
 Lines: at least 3 parallel perpendicular equally spaced

 (ii) the electric field in the region of an isolated negative point charge.
 [Diagram not provided]

 Direction
 Lines: at least 3 radial equally spaced

 How does the electric field strength E vary with distance r from the point charge?

 $E \propto \frac{1}{r^2}$ (1)

 (1 mark)

 Give an example of a region in which you would expect to find a uniform electric field.
 Between charged parallel plates (1).

 (1 mark)
 [Total 6 marks]

9. Cathode Ray Tube

Electron emission
- Heating effect (due to current) (1)
- (Surface) electrons (break free) because of energy gain (1) [Thermionic emission scores both marks]

Electron motion towards anode
The electrons are attracted to/accelerated by the positive anode (1)

Energy
Electron energy $= (10 \times 10^3 \text{ V}) (1.6 \times 10^{-19} \text{ C})$

$= 1.6 \times 10^{-15} \text{ J}$

Correct use of 1.6×10^{-19} OR use of 10×10^3 (1)

Answer (1)

Number of electrons per second

Number each second $= \frac{1.5 \times 10^{-3} \text{ A}}{1.6 \times 10^{-19} \text{ J}}$
9.4×10^{15}\text{ s}^{-1}

Correct conversion mA → A

Answer (1)

2

Rate

Energy each second = (9.4 × 10^{15} \text{ s}^{-1}) (1.6×10^{-15} \text{ J}) (1)

= 15 \text{ Js}^{-1} (\text{W}) / 14.4 \text{ Js}^{-1} (1)

[cf their energy]

10. Evenly distributed spray:

The drops repel [i.e. something repels] (1)

Explanation:

Electrons/negative charge move upwards from Earth on to object (1)
as positive/drops induce negative on object (1)
negatives attract positive/drops [not “neutralised”] (1)

Positive builds up on object OR no electrons move upwards from Earth (1)

OR negative can no longer flow (1)

Positive repels approaching drops (1)

2

11. How electron gun creates beam of electrons

Any four from:

1. hot filament (1)
2. thermionic emission / electrons have enough energy to leave (1)
3. anode and cathode / ± electrodes [identified] (1)
4. E–field OR force direction OR cause of acceleration (1)
5. collimation [eg gap in anode identified as causing beam] (1)
6. need for vacuum (1)

Max 4

Speed of electrons

(eV =) \frac{1}{2} mv^2 (1)

Use of eV [ie substituted or rearranged] (1)

Answer [1.09 × 10^7 \text{ m s}^{-1}] (1)

1.6 × 10^{-19} × 340 (J) = \frac{1}{2} \times 9.11 × 10^{-31} (\text{kg}) \times v^2

v =1.09 × 10^7 \text{ m s}^{-1}

3

Definition of term electric field

Region/area/space in which charge experiences force (1)

terical acceleration of electrons due to field (1)

[Bald answer =0]

Use of equation $E = V/d$ (1)
\[E = \frac{V}{d} = 2500 \text{ V} \div 0.09 \text{ m} = 28 \text{ (kV m}^{-1}) \]

Rearranged equation \(E = \frac{F}{q} \) or substitution into it (I)

\[F = Eq = 28000 \times 1.6 \times 10^{-19} \text{ (N)} \times 4.4 \times 10^{-15} \text{ (N)} \]

Equation \(F = ma \) seen or substitution into it (I)

\[A = \frac{F}{m} = \frac{4.4 \times 10^{-15} \text{ (N)}}{9.11 \times 10^{-31} \text{ (kg)}} \]

\[= 4.9 \times 10^{15} \text{ (m s}^{-2}) \text{ (I)} \]

[at least 2 sig fig needed] [No u.e.] [Reverse calculation max 3]

12. Electric field

\[
\frac{100 \text{ (V)}}{300 \times 10^{-6} \text{ (m)}} \quad \text{(I)}
\]

\[= 3.3 \times 10^5 \text{ V m}^{-1} \text{ (I)} \]

Force

\[F = Eq = 3.3 \times 1.6 \times 10^{-19} \text{ (N)} \]

\[= 5.3 \times 10^{-14} \text{ N} \text{ [Allow e.c.f]} \text{ (I)} \]

Why force has this direction

Vertical line ↑ (I)

Attracted to positive plate \{ (I)

OR in terms of field direction \}

How much energy hole gains

\[W = F \times d = 5.3 \times 10^{-14} \times 2.8 \times 10^{-10} \text{ (J)} \text{ (I)} \]

\[= 1.5 \times 10^{-23} \text{ J} \text{ [Allow e.c.f]} \text{ (I)} \]

[8]

13. Forces acting on molecule, shown on diagram A:

Forces not collinear and sense correct (I)

Explanation of why molecules align with field:

Forces not in same line (I)

Hence turning effect [OR torque]

Field lines shown on diagram B:

At least three lines drawn equidistant(I)

Direction correct (I)

Calculations of electric field strength:

\[E = \frac{V}{d} = \frac{1.5 \text{ V}}{1.0 \times 10^{-5} \text{ m}} \quad \text{(I)} \]

\[= 1.5 \times 10^5 \text{ V m}^{-1} \text{ (I)} \]

[7]
14. Credit to be given for all good, relevant Physics Examples of mark scoring points [each relevant formula is also worth 1 mark]:

Between plates field is uniform
Acceleration is constant
Energy gained = 2000e
All ions have same F or same energy
From hole to detector is zero field/force
Ion travels at constant speed
g negligible
time proportional to 1 /velocity
time proportional to 1 /mass
in a vacuum there are no collisions or friction forces

[Max 7]