Mark Scheme Energy Past Paper Questions

Jan 2002 to Jan 2009

Q5 Jan 2002

5(a) decreases for the first four seconds ✓
zero for the remaining six seconds ✓

(b) $E_k = \frac{1}{2} \times 1.4 \times 10^3 \times 16^2 \ ✓$
 $= 1.8 \times 10^5 \text{ J} \ ✓$
 (accept $v = 15 \text{ m s}^{-1}$ from misleading graph and $E_k = 1.6 \times 10^5 \text{ J}$)

(c) (use of $P = Fv$ gives) $20 \times 10^3 = F \times 30 \ ✓$
 $F = 670 \text{ N} \ ✓$

Q6 Jan 2002

6(a) loss of potential energy = $m \times 9.81 \times 6.0 \ ✓$
 gain in kinetic energy = loss of potential energy ✓
 $\frac{1}{2}mv^2 = 58.9 \text{ m}$ gives $v = 10.8 \text{ (m s}^{-1}) \ (\approx 11 \text{ m s}^{-1}) \ ✓$

(b) loses potential energy (as it moves to B) ✓
 gains kinetic energy (as it moves to B) ✓
 regains some potential energy at the expense of kinetic energy as it moves from B to C ✓
 some energy lost as heat (due to friction) ✓
7(a)(i) \[E_p = mg \Delta h \checkmark \]
\[= 5.8 \times 10^{-2} \times 9.8(1) \times 1.5 = 0.85 \text{ J} \checkmark \]

(ii) \[0.85 \text{ J} \checkmark \]
(allow C.E. for value of \(E_p \) from (i))

(iii) (use of \(E_k = \frac{1}{2}mv^2 \) gives) \[0.85 = 0.5 \times 5.8 \times 10^{-2} \times v^2 \checkmark \]
(allow C.E. for answer from (ii))
\[(v^2 = 29.3) \]
\[v = 5.4 \text{ m s}^{-1} \checkmark \]

(iv) (use of \(p = mv \) gives) \[p = 5.8 \times 10^{-2} \times 5.4 \checkmark \]
(allow C.E. for value of \(v \) from (iii))
\[= 0.31 \text{ N s} \checkmark \]

(b) \[\text{use of } F = \frac{\Delta(mv)}{\Delta t} \text{ gives} \]
\[F = \frac{0.31}{0.010} \checkmark \]
(allow C.E. for value of \(p \) from (iv))
\[= 31 \text{ N} \checkmark \]
\[\text{[or } a = \frac{5.4}{0.010} = 540 \text{ (m s}^{-2}) \checkmark \]
\[F = 5.8 \times 10^{-2} \times 540 = 31 \text{ N } \checkmark \]

(c) egg effectively stopped in a longer distance \(\checkmark \)
hence greater time and therefore less force on egg \(\checkmark \)
[or takes longer to stop]
hence force is smaller as \[F = \frac{\Delta(mv)}{t} \]
[or acceleration reduced as it takes longer to stop
thus force will be smaller]

[or some energy is absorbed by container
less absorbed by egg] \(\checkmark \)
(a)(i) (use of \(E_p = mgh \) gives) \[E_p = 70 \times 9.81 \times 150 \checkmark \]
\[= 1.0(3) \times 10^5 \text{ J} \checkmark \]

(ii) (use of \(E_k = \frac{1}{2}mv^2 \) gives) \[E_k = \frac{1}{2} \times 70 \times 45^2 \checkmark \]
\[= 7.1 \times 10^4 \text{ J} \checkmark \] \[(7.09 \times 10^4 \text{ J}) \] (4)

(b)(i) work done \((= 1.03 \times 10^5 - 7.09 \times 10^4) = 3.2(1) \times 10^4 \text{ J} \checkmark \)
(allow C.E. for values of \(E_p \) and \(E_k \) from (a))

(ii) (use of work done = \(Fs \) gives) \[3.21 \times 10^4 = F \times 150 \checkmark \]
(allow C.E. for value of work done from (i))
\[F = 210 \text{ N} \checkmark \] \[(213 \text{ N}) \] (7)

<table>
<thead>
<tr>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (i) (gravitational) potential energy (\checkmark) to kinetic energy (\checkmark)</td>
</tr>
<tr>
<td>(ii) both trolley and mass have kinetic energy (\checkmark) mention of thermal energy (due to friction) (\checkmark)</td>
</tr>
<tr>
<td>(b) masses of trolley and falling mass (\checkmark) distance mass falls (or trolley moves) and time taken to fall (or speed) (\checkmark)</td>
</tr>
<tr>
<td>(c) calculate loss of gravitational pot. energy of falling mass (mgh) (\checkmark) calculate speed of trolley (as mass hits floor), with details of speed calculation (\checkmark) calculate kinetic energy of trolley (\checkmark) and mass (\checkmark) compare (loss of) potential energy with (gain of) kinetic energy (\checkmark)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) potential energy to kinetic energy (\checkmark) mention of thermal energy and friction (\checkmark)</td>
</tr>
<tr>
<td>(b) (use of (\frac{1}{2}mv^2 = mgh) gives) (\frac{1}{2}v_b^2 = 9.81 \times 1.5 \checkmark) [v_b = 5.4(2) \text{ m s}^{-1} \checkmark] [(\text{assumption}) \text{ energy converted to thermal energy is negligible} \checkmark]</td>
</tr>
<tr>
<td>(c) component of weight down the slope causes acceleration (\checkmark) this component decreases as skateboard moves further down the slope (\checkmark) air resistance/friction increases (with speed) (\checkmark)</td>
</tr>
<tr>
<td>(d) (i) distance ((= 0.42 \times 5.4) = 2.3 \text{ m} \checkmark) [(2.27 \text{ m})] (allow C.E. for value of (v_b) from (b))</td>
</tr>
</tbody>
</table>
| (ii) \[v_v = 9.8 \times 0.42 \checkmark \]
\[= 4.1(1) \text{ m s}^{-1} \checkmark \] | 5 |
| (iii) \[v^2 = 4.1^2 + 5.4^2 \checkmark \] \[v = 6.8 \text{ m s}^{-1} \checkmark \] \[(6.78 \text{ m s}^{-1}) \] (allow C.E. for value of \(v_b \) from (b)) | |
| Total | 12 |