Work Done & Power Past Paper Questions

Jan 2002 to Jan 2009

5(a) decreases for the first four seconds ✓
zero for the remaining six seconds ✓ (2)

(b) \[E_k = \frac{1}{2} \times 1.4 \times 10^3 \times 16^2 \] ✓
\[= 1.8 \times 10^5 \text{ J} \] ✓
(accept \(v = 15 \text{ m s}^{-1} \) from misleading graph and \(E_k = 1.6 \times 10^5 \text{ J} \)) (2)

(c) (use of \(P = Fv \) gives) \(20 \times 10^3 = F \times 30 \) ✓
\[F = 670 \text{ N} \] ✓ (2) (6)

5(a) (use of \(F = ma \) gives) \(F = 1.3 \times 10^3 \times 2.5 \) ✓
\[= 3250 \text{ N} \) ✓ \((3.25 \times 10^3)\) (2)

(b)(i) driving force = 3250 + 410 = 3660 N ✓
(allow C.E. from (a))

(b)(ii) (use of \(P = Fv \) gives) \(P = 3660 \times 2.2 \) ✓
(allow C.E. from(i))
\[= 8100 \text{ W} \) ✓ \((8.1 \times 10^3)\) (3)

(c) (component of) car’s weight opposes motion
[or overcomes gravity
or more work is done as car gains potential energy] ✓ (1) (6)

7(a) mark out (equal) distances along height being raised ✓
measure time taken to travel each of these distances ✓
times should be equal ✓
[or use a position sensor attached to a data logger
measure distance or speeds at regular intervals
increase in distance or speeds should be constant] max(2)

7(b) find work done by motor from gain in potential energy of metal block ✓
divide work done by time to find power ✓
measurements: mass of block, height block has risen and time taken ✓
[or power = \(Fv \)
force is weight of block
velocity is velocity of block
same measurements as above] max(2) (4)
(a)(i) (use of \(E_p = mgh \) gives) \(E_p = 70 \times 9.81 \times 150 \) ✓
\(= 1.0(3) \times 10^5 \) J ✓

(ii) (use of \(E_k = \frac{1}{2}mv^2 \) gives) \(E_k = \frac{1}{2} \times 70 \times 45^2 \) ✓
\(= 7.1 \times 10^5 \) J ✓
\((7.09 \times 10^4 \) J) (4)

(b)(i) work done (= 1.03 \(\times 10^5 \) – 7.09 \(\times 10^4 \)) = 3.2(1) \(\times 10^4 \) J ✓
(allow C.E. for values of \(E_p \) and \(E_k \) from (a))

(ii) (use of work done = \(Fx \) gives) \(3.21 \times 10^4 = F \times 150 \) ✓
(allow C.E. for value of work done from (i))
\(F = 210 \) N ✓
\((213 \) N) (3)

Question 3

(a) resultant force on crate is zero ✓
forces must have equal magnitudes or size ✓
(but) act in opposite directions ✓
correct statement of 1\(^{st}\) or 2\(^{nd}\) law ✓

(b)(i) work done = \(F \times d = 640 \times 9.81 \times 8.0 \) ✓
\(= 5.0(2) \times 10^4 \) J ✓

(ii) (use of \(P = \frac{W}{t} \) gives) \(P = \frac{5.02 \times 10^4}{4.5} = 1.1(2) \times 10^4 \) W ✓
(allow C.E. for value of work done from (i)) (3)

<table>
<thead>
<tr>
<th>Question 3</th>
<th>Q3 Jan 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
</tr>
</tbody>
</table>
| (i) | (use of \(F_H = F \cos \theta \) gives) \(\checkmark \checkmark \)
resultant force = \(2 \times 6500 \cos 35 \)
resultant force = \(11000 \) \(N \) (10649)
(1 out of 2 if only one component given) 4

(ii) (use of work = force \times distance gives) \(\checkmark \checkmark \)
work = \(11000 \times 1.5 \times 60 \)
work = 990 000 J (958 408)
(if use 10 649 then 960 000 J) (b) there is an opposing force or mention of friction/drag \(\checkmark \checkmark \)
work is done on this force or overall resultant force is zero 2

(c) initially accelerates \(\checkmark \checkmark \checkmark \) max 3
as horizontal component increases
(so) forward force now larger than drag or resultant force no longer zero or now a resultant forward force eventually reaches new higher constant speed

Total 9
Question 5

(i) find students weight (or mass) ✓
measure (vertical) height (of stairs) ✓
time (how long it takes student to run up stairs) ✓

(ii) using $E_p = mgh$ ✓
link measurements to quantities used to calculate E_p ✓
divide gain in E_p (or work) by time to get power ✓

(iii) not all work done goes to E_p ✓
ignoring gain in E_k ✓
or ignoring movement
or ignoring fiction
or athlete gets hot
or body not 100% efficient

Total 8

Question 2

<table>
<thead>
<tr>
<th>(a)</th>
<th>(i)</th>
<th>vector has direction and a scalar does not ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ii)</td>
<td>scalar examples; any two e.g. speed, mass, energy, time, power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vector examples; any two e.g. displacement, velocity, acceleration, force or weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓✓✓ for 4 correct, ✓✓ for 3 correct, ✓ for 2 correct</td>
</tr>
</tbody>
</table>

(b)	(i)	horizontal component (= 2.8 cos 35) = 2.3 (kN) (2293.6) ✓
---	---	vertical component (= 2.8 sin 35) = 1.6 (kN) (1606.0) ✓
	(ii)	power = force × velocity or $2.3\,\text{kN} \times 8.8\,\text{m}\cdot\text{s}^{-1}$ ✓ (ecf from 2 (b)(i))
		$= 1.9 \times 10^4$ (19037 or 19100) ✓ ecf
		W (or $\text{J}\cdot\text{s}^{-1}$) ✓ (or 19 W (or $\text{kJ}\cdot\text{s}^{-1}$))

(c)	(area of cross-section of cable =) $\pi \times (\frac{1}{2} \times 0.014)^2$ ✓ = $1.5(4) \times 10^{-4}$ (m2) ✓	
	stress (= F/A) = $rac{2800\,\text{N}}{1.54 \times 10^{-4}\,\text{m}^2}$ (allow ecf here if attempt to calculate area) ✓	
		$= 1.8(2) \times 10^7$ ✓ ecf
	P_a (or N m$^{-2}$) ✓	

Total 14