Hooke’s Law - Energy Stored In Spring

\[\frac{1}{2} F \Delta L \]

- Using \(W = FD \)
- We can see the area underneath graph = energy stored
- As the force is varying (keeps increasing) we must take the average force applied
- Hence we use a half of the max force applied
- Multiplied by the extension (final length – initial length)

Diffraction Grating - \(N^{th} \) Order Angle

\[d \sin \theta = n \lambda \]

- As we can see from diagram if constructive interference (maxima) the path difference between 2 waves must be a whole number of wavelengths
- So \(AC = n \lambda \)
- And angle \(\hat{A}BC = \theta \) where \(\theta \) is the angle to the \(n^{th} \) order
- \(D \) (distance from centre to centre of each slit) = AB
- Using trigonometry we can see \(\sin \theta = \frac{n \lambda}{d} \)
- Hence \(d \sin \theta = n \lambda \)