C3 Trigonometry

1. **June 2010 qu.3**
 (i) Express the equation \(\csc \theta (3 \cos 2\theta + 7) + 11 = 0 \) in the form \(a \sin^2 \theta + b \sin \theta + c = 0 \), where \(a, b \) and \(c \) are constants. [3]
 (ii) Hence solve, for \(-180^\circ < \theta < 180^\circ\), the equation \(\csc \theta (3 \cos 2\theta + 7) + 11 = 0 \). [3]

2. **June 2010 qu.8**
 (i) Express \(3 \cos x + 3 \sin x \) in the form \(R \cos(x - \alpha) \), where \(R > 0 \) and \(0 < \alpha < \frac{1}{2} \pi \). [3]
 (ii) The expression \(T(x) \) is defined by \(T(x) = \frac{8}{3 \cos x + 3 \sin x} \).
 (a) Determine a value of \(x \) for which \(T(x) \) is not defined. [2]
 (b) Find the smallest positive value of \(x \) satisfying \(T(3x) = \frac{8}{9} \sqrt{6} \), giving your answer in an exact form. [4]

3. **Jan 2010 qu.2**
 The angle \(\theta \) is such that \(0^\circ < \theta < 90^\circ \).
 (i) Given that \(\theta \) satisfies the equation \(6 \sin 2\theta = 5 \cos \theta \), find the exact value of \(\sin \theta \). [3]
 (ii) Given instead that \(\theta \) satisfies the equation \(8 \cos \theta \csc^2 \theta = 3 \), find the exact value of \(\cos \theta \). [5]

4. **Jan 2010 qu.9**
 The value of \(\tan 10^\circ \) is denoted by \(p \). Find, in terms of \(p \), the value of
 (i) \(\tan 55^\circ \), [3]
 (ii) \(\tan 5^\circ \), [4]
 (iii) \(\tan \theta \), where \(\theta \) satisfies the equation \(3 \sin(\theta + 10^\circ) = 7 \cos(\theta - 10^\circ) \). [5]

5. **June 2009 qu.1**
 - **Fig. 1**
 - **Fig. 2**
 - **Fig. 3**

 Each diagram above shows part of a curve, the equation of which is one of the following:
 \(y = \sin^{-1} x, \quad y = \cos^{-1} x, \quad y = \tan^{-1} x, \quad y = \sec x, \quad y = \csc x, \quad y = \cot x \).

 State which equation corresponds to
 (i) Fig. 1, [1]
 (ii) Fig. 2, [1]
 (iii) Fig. 3. [1]

6. **June 2009 qu.3**
 The angles \(\alpha \) and \(\beta \) are such that \(\tan \alpha = m + 2 \) and \(\tan \beta = m \), where \(m \) is a constant.
 (i) Given that \(\sec^2 \alpha - \sec^2 \beta = 16 \), find the value of \(m \). [3]
 (ii) Hence find the exact value of \(\tan(\alpha + \beta) \). [3]
7. **June 2009 qu.7**
 (i) Express $8 \sin \theta - 6 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0^\circ < \alpha < 90^\circ$.
 (ii) Hence
 (a) solve, for $0^\circ < \theta < 360^\circ$, the equation $8 \sin \theta - 6 \cos \theta = 9$,
 (b) find the greatest possible value of $32 \sin x - 24 \cos x - (16 \sin y - 12 \cos y)$ as the angles x and y vary.

8. **Jan 2009 qu.3**
 (i) Express $2 \tan^2 \theta - \frac{1}{\cos \theta}$ in terms of $\sec \theta$.
 (ii) Hence solve, for $0^\circ < \theta < 360^\circ$, the equation $2 \tan^2 \theta - \frac{1}{\cos \theta} = 4$.

9. **Jan 2009 qu.9**
 (i) By first expanding $\cos(2\theta + \theta)$, prove that $\cos 3\theta \equiv 4 \cos^3 \theta - 3 \cos \theta$.
 (ii) Hence prove that $\cos 6\theta \equiv 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$.
 (iii) Show that the only solutions of the equation $1 + \cos 6\theta = 18 \cos^2 \theta$ are odd multiples of 90°.

10. **June 2008 qu.5**
 (a) Express $\tan 2\alpha$ in terms of $\tan \alpha$ and hence solve, for $0^\circ < \alpha < 180^\circ$, the equation $\tan 2\alpha \tan \alpha = 8$.
 (b) Given that β is the acute angle such that $\sin \beta = \frac{6}{7}$, find the exact value of
 (i) $\cosec \beta$,
 (ii) $\cot^2 \beta$.

11. **June 2008 qu.8**
 The expression $T(\theta)$ is defined for θ in degrees by $T(\theta) = 3\cos(\theta - 60^\circ) + 2\cos(\theta + 60^\circ)$.
 (i) Express $T(\theta)$ in the form $A \sin \theta + B \cos \theta$, giving the exact values of the constants A and B.
 (ii) Hence express $T(\theta)$ in the form $R \sin(\theta + \alpha)$, where $R > 0$ and $0^\circ < \alpha < 90^\circ$.
 (iii) Find the smallest positive value of θ such that $T(\theta) + 1 = 0$.

12. **Jan 2008 qu.3**
 (a) Solve, for $0^\circ < \alpha < 180^\circ$, the equation $\sec \frac{1}{2}\alpha = 4$.
 (b) Solve, for $0^\circ < \beta < 180^\circ$, the equation $\tan \beta = 7\cot \beta$.

13. **Jan 2008 qu.6**
 The diagram shows the graph of $y = -\sin^{-1}(x - 1)$.
14. \textit{Jan 2008 qu.9}
(i) Give details of the pair of geometrical transformations which transforms the graph of \(y = -\sin^{-1}(x - 1) \) to the graph of \(y = \sin^{-1} x \). [3]
(ii) Sketch the graph of \(y = -\sin^{-1}(x - 1) \). [2]
(iii) Find the exact solutions of the equation \(-\sin^{-1}(x - 1) = \frac{1}{2} \pi \). [3]

15. \textit{June 2007 qu.7}
(i) Sketch the graph of \(y = \sec x \) for \(0 \leq x \leq 2\pi \). [2]
(ii) Solve the equation \(\sec x = 3 \) for \(0 \leq x \leq 2\pi \), giving the roots correct to 3 significant figures. [3]
(iii) Solve the equation \(\sec \theta = 5 \csc \theta \) for \(0 \leq \theta \leq 2\pi \), giving the roots correct to 3 s.f. [4]

16. \textit{June 2007 qu.9}
(i) Prove the identity \(\tan(\theta + 60^\circ) \tan(\theta - 60^\circ) \equiv \frac{\tan^2 \theta - 3}{1 - 3 \tan^2 \theta} \). [4]
(ii) Solve, for \(0^\circ < \theta < 180^\circ \), the equation \(\tan(\theta + 60^\circ) \tan(\theta - 60^\circ) = 4 \sec^2 \theta - 3 \), giving your answers correct to the nearest 0.1°. [5]
(iii) Show that, for all values of the constant \(k \), the equation \(\tan(\theta + 60^\circ) \tan(\theta - 60^\circ) = k \) has two roots in the interval \(0^\circ < \theta < 180^\circ \). [3]

17. \textit{Jan 2007 qu.2}
It is given that \(\theta \) is the acute angle such that \(\sin \theta = \frac{12}{13} \). Find the exact value of
(i) \(\cot \theta \). [2]
(ii) \(\cos 2\theta \). [3]

18. \textit{Jan 2007 qu.5}
(i) Express \(4 \cos \theta - \sin \theta \) in the form \(R \cos(\theta + \alpha) \), where \(R > 0 \) and \(0^\circ < \alpha < 90^\circ \). [3]
(ii) Hence solve the equation \(4 \cos \theta - \sin \theta = 2 \), giving all solutions for which \(-180^\circ < \theta < 180^\circ \). [5]

19. \textit{June 2006 qu.5}
(i) Write down the identity expressing \(\sin 2\theta \) in terms of \(\sin \theta \) and \(\cos \theta \). [1]
(ii) Given that \(\sin \alpha = \frac{1}{4} \) and \(\alpha \) is acute, show that \(\sin 2\alpha = \frac{1}{8} \sqrt{15} \). [3]
(iii) Solve, for \(0^\circ < \beta < 90^\circ \), the equation \(5 \sin 2\beta \sec \beta = 3 \). [3]

20. \textit{June 2006 qu.8}
(i) Express \(5 \cos x + 12 \sin x \) in the form \(R \cos(x - \alpha) \), where \(R > 0 \) and \(0^\circ < \alpha < 90^\circ \). [3]
(ii) Hence give details of a pair of transformations which transforms the curve \(y = \cos x \) to the curve \(y = 5 \cos x + 12 \sin x \). [3]
(iii) Solve, for \(0^\circ < x < 360^\circ \), the equation \(5 \cos x + 12 \sin x = 2 \), giving your answers correct to the nearest 0.1°. [5]

21. \textit{Jan 2006 qu.2}
Solve, for \(0^\circ < \theta < 360^\circ \), the equation \(\sec^2 \theta = 4 \tan \theta - 2 \). [5]
22. **Jan 2006 qu.9**
 (i) By first writing \(\sin 3\theta\) as \(\sin(2\theta + \theta)\), show that \(\sin 3\theta = 3\sin \theta - 4\sin^3 \theta\). \([4]\]
 (ii) Determine the greatest possible value of \(9\sin \left(\frac{10}{3}a\right) - 12\sin^3 \left(\frac{10}{3}a\right)\), and find the smallest positive value of \(a\) (in degrees) for which that greatest value occurs. \([3]\]
 (iii) Solve, for \(0^\circ < \beta < 90^\circ\), the equation \(3\sin 6\beta \csc 2\beta = 4\). \([6]\]

23. **June 2005 qu.5**
 (i) Express \(3\sin \theta + 2\cos \theta\) in the form \(R\sin(\theta + \alpha)\), where \(R > 0\) and \(0^\circ < \alpha < 90^\circ\). \([3]\]
 (ii) Hence solve the equation \(3\sin \theta + 2\cos \theta = \frac{7}{2}\), giving all solutions for which \(0^\circ < \theta < 360^\circ\). \([5]\]

24. **June 2005 qu.7**
 (i) Write down the formula for \(\cos 2x\) in terms of \(\cos x\). \([1]\]
 (ii) Prove the identity \(\frac{4\cos 2x}{1 + \cos 2x} = 4 - 2\sec^2 x\). \([3]\]
 (iii) Solve, for \(0 < x < 2\pi\), the equation \(\frac{4\cos 2x}{1 + \cos 2x} = 3\tan x - 7\). \([5]\]