C3 Numerical Methods

1. June 2010 qu. 6
 (i) Show by calculation that the equation \(\tan^2 x - x - 2 = 0 \), where \(x \) is measured in radians, has a root between 1.0 and 1.1. \[3\]
 (ii) Use the iteration formula \(x_{n+1} = \tan^{-1} \left(\sqrt{2 + x_n} \right) \) with a suitable starting value to find this root correct to 5 decimal places. You should show the outcome of each step of the process. \[4\]
 (iii) Deduce a root of the equation \(\sec^2 2x - 2x - 3 = 0 \). \[3\]

2. Jan 2010 qu.3
 (i) Find, in simplified form, the exact value of \(\int_{0}^{20} \frac{60}{x} \, dx \). \[2\]
 (ii) Use Simpson’s rule with two strips to find an approximation to \(\int_{0}^{20} \frac{60}{x} \, dx \). \[3\]
 (iii) Use your answers to parts (i) and (ii) to show that \(\ln 2 \approx \frac{25}{36} \). \[2\]

3. Jan 2010 qu. 8
 (i) The curve \(y = \sqrt{x} \) can be transformed to the curve \(y = \sqrt{2x+3} \) by means of a stretch parallel to the \(y \)-axis followed by a translation. State the scale factor of the stretch and give details of the translation. \[3\]
 (ii) It is given that \(N \) is a positive integer. By sketching on a single diagram the graphs of \(y = \sqrt{2x+3} \) and \(y = \frac{N}{x^3} \), show that the equation \(\sqrt{2x+3} = \frac{N}{x^3} \) has exactly one real root. \[3\]
 (iii) A sequence \(x_1, x_2, x_3, \ldots \) has the property that \(x_{n+1} = N \left(\frac{1}{2} x_n + 3 \right)^{\frac{1}{6}} \). For certain values of \(x_1 \) and \(N \), it is given that the sequence converges to the root of the equation \(\sqrt{2x+3} = \frac{N}{x^3} \).
 (a) Find the value of the integer \(N \) for which the sequence converges to the value 1.9037 (correct to 4 decimal places). \[2\]
 (b) Find the value of the integer \(N \) for which, correct to 4 decimal places, \(x_3 = 2.6022 \) and \(x_4 = 2.6282 \). \[3\]

4. FP2 Jan 2010 qu 1 part i)
 It is given that \(f(x) = x^2 - \sin x \).
 (i) The iteration \(x_{n+1} = \sqrt{\sin x_n} \), with \(x_1 = 0.875 \), is to be used to find a real root, \(\alpha \), of the equation \(f(x) = 0 \). Find \(x_2, x_3 \) and \(x_4 \), giving the answers correct to 6 decimal places. \[2\]

5. June 2009 qu. 4
 It is given that \(\int_{3a}^{3a} (e^{3x} + e^x) \, dx = 100 \), where \(a \) is a positive constant.
 (i) Show that \(a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a}) \). \[5\]
 (ii) Use an iterative process, based on the equation in part (i), to find the value of \(a \) correct to 4 decimal places. Use a starting value of 0.6 and show the result of each step of the process.

6. June 2009 qu. 8
The diagram shows the curves \(y = \ln x \) and \(y = 2 \ln(x - 6) \). The curves meet at the point \(P \) which has \(x \)-coordinate \(a \). The shaded region is bounded by the curve \(y = 2 \ln(x - 6) \) and the lines \(x = a \) and \(y = 0 \).

(i) Give details of the pair of transformations which transforms the curve \(y = \ln x \) to the curve \(y = 2 \ln(x - 6) \). \([3] \)

(ii) Solve an equation to find the value of \(a \). \([4] \)

(iii) Use Simpson’s rule with two strips to find an approximation to the area of the shaded region. \([3] \)

7. Jan 2009 qu. 2

(i) Use Simpson’s rule with four strips to find an approximation to \(\int_4^{12} \ln x \ dx \), giving your answer correct to 2 decimal places. \([4] \)

(ii) Deduce an approximation to \(\int_4^{12} \ln(x^{10}) \ dx \). \([1] \)

8. Jan 2009 qu. 6

The function \(f \) is defined for all real values of \(x \) by

\[
f(x) = \sqrt[3]{\frac{1}{2} x + 2}.
\]

The graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) meet at the point \(P \), and the graph of \(y = f^{-1}(x) \) meets the \(x \)-axis at \(Q \) (see diagram).

(i) Find an expression for \(f^{-1}(x) \) and determine the \(x \)-coordinate of the point \(Q \). \([3] \)
(ii) State how the graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) are related geometrically, and hence show that the \(x \)-coordinate of the point \(P \) is the root of the equation \(x = \frac{1}{2} \sqrt{1 - x + 2} \). [2]

(iii) Use an iterative process, based on the equation \(x = \frac{1}{2} \sqrt{1 - x + 2} \), to find the \(x \)-coordinate of \(P \), giving your answer correct to 2 decimal places. [4]

9. **FP2 Jan 2009 qu. 2 part i)**

It is given that \(\alpha \) is the only real root of the equation \(x^5 + 2x - 28 = 0 \) and that \(1.8 < \alpha < 2 \).

(i) The iteration \(x_{n+1} = \frac{1}{3} \sqrt{28 - 2x_n} \), with \(x_1 = 1.9 \), is to be used to find \(\alpha \). Find the values of \(x_2 \), \(x_3 \) and \(x_4 \), giving the answers correct to 7 decimal places. [3]

10. **June 2008 qu. 4**

The gradient of the curve \(y = (2x^2 + 9)^{\frac{5}{2}} \) at the point \(P \) is 100.

(i) Show that the \(x \)-coordinate of \(P \) satisfies the equation \(x = \frac{3}{5} \left(2x^2 + 9 \right)^{\frac{2}{3}} \). [3]

(ii) Show by calculation that the \(x \)-coordinate of \(P \) lies between 0.3 and 0.4. [3]

(iii) Use an iterative formula, based on the equation in part (i), to find the \(x \)-coordinate of \(P \) correct to 4 decimal places. You should show the result of each iteration. [3]

11. **Jan 2008 qu. 2**

The sequence defined by \(x_1 = 3 \), \(x_{n+1} = \frac{1}{3} \sqrt{31 - \frac{2}{5} x_n} \) converges to the number \(\alpha \).

(i) Find the value of \(\alpha \) correct to 3 decimal places, showing the result of each iteration. [3]

(ii) Find an equation of the form \(ax^3 + bx + c = 0 \), where \(a \), \(b \) and \(c \) are integers, which has \(\alpha \) as a root. [3]

12. **June 2007 qu. 6**

(i) Given that \(\int_0^a (6e^{2x} + x)dx = 42 \), show that \(a = \frac{1}{2} \ln(15 - \frac{1}{6} a^2) \). [5]

(ii) Use an iterative formula, based on the equation in part (i), to find the value of \(a \) correct to 3 decimal places. Use a starting value of 1 and show the result of each iteration. [4]

13. **Jan 2007 qu. 3**

(a) It is given that \(a \) and \(b \) are positive constants. By sketching graphs of \(y = x^5 \) and \(y = a - bx \) on the same diagram, show that the equation \(x^5 + bx - a = 0 \) has exactly one real root. [3]

(b) Use the iterative formula \(x_{n+1} = \frac{1}{2} \sqrt{53 - 2x_n} \), with a suitable starting value, to find the real root of the equation \(x^5 + 2x - 53 = 0 \). Show the result of each iteration, and give the root correct to 3 decimal places. [4]

14. **Jan 2007 qu. 8**
The diagram shows the curve with equation \(y = x^8 e^{-x^2} \). The curve has maximum points at \(P \) and \(Q \). The shaded region \(A \) is bounded by the curve, the line \(y = 0 \) and the line through \(Q \) parallel to the \(y \)-axis. The shaded region \(B \) is bounded by the curve and the line \(PQ \).

(i) Show by differentiation that the \(x \)-coordinate of \(Q \) is 2.

(ii) Use Simpson’s rule with 4 strips to find an approximation to the area of region \(A \). Give your answer correct to 3 decimal places.

(iii) Deduce an approximation to the area of region \(B \).

15. June 2006 qu. 3

The equation \(2x^3 + 4x - 35 = 0 \) has one real root.

(i) Show by calculation that this real root lies between 2 and 3.

(ii) Use the iterative formula

\[x_{n+1} = \sqrt[3]{17.5 - 2x_n} \]

with a suitable starting value, to find the real root of the equation \(2x^3 + 4x - 35 = 0 \) correct to 2 decimal places. You should show the result of each iteration.

16. Jan 2006 qu. 7

The diagram shows the curve with equation \(y = \cos^{-1}x \).

(i) Sketch the curve with equation \(y = 3 \cos^{-1}(x-1) \), showing the coordinates of the points where the curve meets the axes.

(ii) By drawing an appropriate straight line on your sketch in part (i), show that the equation \(3 \cos^{-1}(x-1) = x \) has exactly one root.

(iii) Show by calculation that the root of the equation \(3 \cos^{-1}(x-1) = x \) lies between 1.8 and 1.9.

(iv) The sequence defined by \(x_1 = 2, \ x_{n+1} = 1 + \cos \left(\frac{1}{3} x_n \right) \)

converges to a number \(\alpha \). Find the value of \(\alpha \) correct to 2 decimal places and explain why \(\alpha \) is the root of the equation \(3 \cos^{-1}(x-1) = x \).
17. **Jan 2006 qu. 8**

The diagram shows part of the curve \(y = \ln(5 - x^2) \) which meets the \(x \)-axis at the point \(P \) with coordinates \((2, 0)\). The tangent to the curve at \(P \) meets the \(y \)-axis at the point \(Q \). The region \(A \) is bounded by the curve and the lines \(x = 0 \) and \(y = 0 \). The region \(B \) is bounded by the curve and the lines \(PQ \) and \(x = 0 \).

(i) Find the equation of the tangent to the curve at \(P \). \([5]\)

(ii) Use Simpson’s Rule with four strips to find an approximation to the area of the region \(A \), giving your answer correct to 3 significant figures. \([4]\)

(iii) Deduce an approximation to the area of the region \(B \). \([2]\)

18. **June 2005 qu. 8**

The diagram shows part of each of the curves \(y = e^{\frac{1}{3} x} \) and \(y = \frac{3}{3} \sqrt{3x + 8} \). The curves meet, as shown in the diagram, at the point \(P \). The region \(R \), shaded in the diagram, is bounded by the two curves and by the \(y \)-axis.

(i) Show by calculation that the \(x \)-coordinate of \(P \) lies between 5.2 and 5.3. \([3]\)

(ii) Show that the \(x \)-coordinate of \(P \) satisfies the equation \(x = \frac{5}{3} \ln(3x + 8) \). \([2]\)

(iii) Use an iterative formula, based on the equation in part (ii), to find the \(x \)-coordinate of \(P \) correct to 2 decimal places. \([3]\)

(iv) Use integration, and your answer to part (iii), to find an approximate value of the area of the region \(R \). \([5]\)

19. **June 2005 qu. 4**

(a) The diagram shows the curve \(y = \frac{2}{\sqrt{x}} \).

The region \(R \), shaded in the diagram, is bounded by the curve and by the lines \(x = 1 \), \(x = 5 \) and \(y = 0 \). The region \(R \) is rotated completely about the \(x \)-axis.

Find the exact volume of the solid formed. \([4]\)

(b) Use Simpson’s rule, with 4 strips, to find an approximate value for

\[
\int_1^5 \sqrt{(x^2 + 1)} \, dx,
\]

giving your answer correct to 3 decimal places. \([4]\)