C3 Functions

1. **June 2010 qu.9**

 The functions \(f \) and \(g \) are defined for all real values of \(x \) by
 \[
 f(x) = 4x^2 - 12x \quad \text{and} \quad g(x) = ax + b,
 \]
 where \(a \) and \(b \) are non-zero constants.
 (i) Find the range of \(f \). \[3\]
 (ii) Explain why the function \(f \) has no inverse. \[2\]
 (iii) Given that \(g^{-1}(x) = g(x) \) for all values of \(x \), show that \(a = -1 \). \[4\]
 (iv) Given further that \(gf(x) < 5 \) for all values of \(x \), find the set of possible values of \(b \). \[4\]

2. **Jan 2010 qu.4**

 The function \(f \) is defined for all real values of \(x \) by
 \[
 f(x) = 2 - \sqrt{x+1}.
 \]
 The diagram shows the graph of \(y = f(x) \).
 (i) Evaluate \(f(f(-126)) \). \[2\]
 (ii) Find the set of values of \(x \) for which \(f(x) = |f(x)| \). \[2\]
 (iii) Find an expression for \(f^{-1}(x) \). \[3\]
 (iv) State how the graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) are related geometrically. \[1\]

3. **June 2009 qu.5**

 The functions \(f \) and \(g \) are defined for all real values of \(x \) by
 \[
 f(x) = 3x - 2 \quad \text{and} \quad g(x) = 3x + 7.
 \]
 Find the exact coordinates of the point at which
 (i) the graph of \(y = fg(x) \) meets the \(x \)-axis, \[3\]
 (ii) the graph of \(y = g(x) \) meets the graph of \(y = g^{-1}(x) \), \[3\]
 (iii) the graph of \(y = |f(x)| \) meets the graph of \(y = |g(x)| \). \[4\]

4. **June 2009 qu.8**

 The diagram shows the curves \(y = \ln x \) and \(y = 2 \ln(x - 6) \). The curves meet at the point \(P \) which has \(x \)-coordinate \(a \). The shaded region is bounded by the curve \(y = 2 \ln(x - 6) \) and the lines \(x = a \) and \(y = 0 \).
 (i) Give details of the pair of transformations which transforms the curve \(y = \ln x \) to the curve \(y = 2 \ln(x - 6) \). \[3\]
 (ii) Solve an equation to find the value of \(a \). \[4\]
5. Jan 2009 qu.6

The function \(f \) is defined for all real values of \(x \) by

\[
f(x) = \sqrt{\frac{1}{2}x + 2}.
\]

The graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) meet at the point \(P \), and the graph of \(y = f^{-1}(x) \) meets the \(x \)-axis at \(Q \) (see diagram).

(i) Find an expression for \(f^{-1}(x) \) and determine the \(x \)-coordinate of the point \(Q \). [3]

(ii) State how the graphs of \(y = f(x) \) and \(y = f^{-1}(x) \) are related geometrically, and hence show that the \(x \)-coordinate of the point \(P \) is the root of the equation

\[
x = \sqrt{\frac{1}{2}x + 2}.
\]

6. Jan 2009 qu.7

The diagram shows the curve \(y = e^{kx} - a \), where \(k \) and \(a \) are constants.

(i) Give details of the pair of transformations which transforms the curve \(y = e^x \) to the curve \(y = e^{kx} - a \). [3]

(ii) Sketch the curve \(y = \left| e^{kx} - a \right| \). [2]

(iii) Given that the curve \(y = \left| e^{kx} - a \right| \) passes through the points \((0, 13)\) and \((\ln 3, 13)\), find the values of \(k \) and \(a \). [4]

7. June 2008 qu.1

Find the exact solutions of the equation

\[
\left| 4x - 5 \right| = \left| 3x - 5 \right|.
\]
8. June 2008 qu.2

The diagram shows the graph of \(y = f(x) \). It is given that \(f(-3) = 0 \) and \(f(0) = 2 \). Sketch, on separate diagrams, the following graphs, indicating in each case the coordinates of the points where the graph crosses the axes:

(i) \(y = f^{-1}(x) \), \[2\]

(ii) \(y = -2f(x) \). \[3\]

9. June 2008 qu.7

It is claimed that the number of plants of a certain species in a particular locality is doubling every 9 years. The number of plants now is 42. The number of plants is treated as a continuous variable and is denoted by \(N \). The number of years from now is denoted by \(t \).

(i) Two equivalent expressions giving \(N \) in terms of \(t \) are

\[N = A \times 2^{kt} \quad \text{and} \quad N = Ae^{mt}. \]

Determine the value of each of the constants \(A \), \(k \) and \(m \). \[4\]

(ii) Find the value of \(t \) for which \(N = 100 \), giving your answer correct to 3 significant figures. \[2\]

(iii) Find the rate at which the number of plants will be increasing at a time 35 years from now. \[3\]

10. Jan 2008 qu.1

Functions \(f \) and \(g \) are defined for all real values of \(x \) by \(f(x) = x^3 + 4 \) and \(g(x) = 2x - 5 \).

Evaluate

(i) \(fg(1) \), \[2\]

(ii) \(f^{-1}(12) \). \[3\]

11. Jan 2008 qu.6

The diagram shows the graph of \(y = -\sin^{-1}(x - 1) \).

(i) Give details of the pair of geometrical transformations which transforms the graph of \(y = -\sin^{-1}(x - 1) \) to the graph of \(y = \sin^{-1}x \). \[3\]

(ii) Sketch the graph of \(y = \left| -\sin^{-1}(x - 1) \right| \). \[2\]

(iii) Find the exact solutions of the equation \(\left| -\sin^{-1}(x - 1) \right| = \frac{1}{3}\pi \). \[3\]
12. **June 2007 qu.2**
Solve the inequality $|4x - 3| < |2x + 1|$.

13. **June 2007 qu.3**
The function f is defined for all non-negative values of x by $f(x) = 3 + \sqrt{x}$.
(i) Evaluate $f(169)$.
(ii) Find an expression for $f^{-1}(x)$ in terms of x.
(iii) On a single diagram sketch the graphs of $y = f(x)$ and $y = f^{-1}(x)$, indicating how the two graphs are related.

14. **June 2007 qu.5**
A substance is decaying in such a way that its mass, m kg, at a time t years from now is given by the formula $m = 240e^{-0.04t}$.
(i) Find the time taken for the substance to halve its mass.
(ii) Find the value of t for which the mass is decreasing at a rate of 2.1 kg per year.

15. **Jan 2007 qu.9**
Functions f and g are defined by $f(x) = 2 \sin x$ for $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$,
$g(x) = 4 - 2x^2$ for $x \leq \;$.
(i) State the range of f and the range of g.
(ii) Show that $gf(0.5) = 2.16$, correct to 3 significant figures, and explain why $fg(0.5)$ is not defined.
(iii) Find the set of values of x for which $f^{-1}g(x)$ is not defined.

16. **June 2006 qu.2**
Solve the inequality $|2x - 3| < |x + 1|$.

17. **June 2006 qu.6**

The diagram shows the graph of $y = f(x)$, where $f(x) = 2 - x^2$, $x \leq 0$.
(i) Evaluate $ff(-3)$.
(ii) Find an expression for $f^{-1}(x)$.
(iii) Sketch the graph of $y = f^{-1}(x)$. Indicate the coordinates of the points where the graph meets the axes.
18. **Jan 2006 qu.4**

The function \(f \) is defined by \(f(x) = 2 - \sqrt{x} \) for \(x \geq 0 \). The graph of \(y = f(x) \) is shown above.

(i) State the range of \(f \). [1]

(ii) Find the value of \(f(f(4)) \). [2]

(iii) Given that the equation \(|f(x)| = k\) has two distinct roots, determine the possible values of the constant \(k \). [2]

19. **June 2005 qu.1**

The function \(f \) is defined for all real values of \(x \) by \(f(x) = 10 - (x + 3)^2 \).

(i) State the range of \(f \). [1]

(ii) Find the value of \(f(f(-1)) \). [3]

20. **June 2005 qu.2**

Find the exact solutions of the equation \(|6x - 1| = |x - 1|\). [4]

21. **June 2005 qu.9**

The function \(f \) is defined by \(f(x) = \sqrt{mx + 7} - 4 \), where \(x \geq -\frac{7}{m} \) and \(m \) is a positive constant.

The diagram shows the curve \(y = f(x) \).

(i) A sequence of transformations maps the curve \(y = \sqrt{x} \) to the curve \(y = f(x) \). Give details of these transformations. [4]

(ii) Explain how you can tell that \(f \) is a one–one function and find an expression for \(f^{-1}(x) \). [4]

(iii) It is given that the curves \(y = f(x) \) and \(y = f^{-1}(x) \) do not meet. Explain how it can be deduced that neither curve meets the line \(y = x \), and hence determine the set of possible values of \(m \). [5]