The function \(f(x) \) is defined by \(f(x) = \sqrt{4 - x^2} \) for \(-2 \leq x \leq 2\).

(i) Show that the curve \(y = \sqrt{4 - x^2} \) is a semicircle of radius 2, and explain why it is not the whole of this circle. \[3\]

Fig. 9 shows a point \(P(a, b) \) on the semicircle. The tangent at \(P \) is shown.

(ii) (A) Use the gradient of \(OP \) to find the gradient of the tangent at \(P \) in terms of \(a \) and \(b \).

(B) Differentiate \(\sqrt{4 - x^2} \) and deduce the value of \(f'(a) \).

(C) Show that your answers to parts (A) and (B) are equivalent. \[6\]

The function \(g(x) \) is defined by \(g(x) = 3f(x - 2) \), for \(0 \leq x \leq 4 \).

(iii) Describe a sequence of two transformations that would map the curve \(y = f(x) \) onto the curve \(y = g(x) \).

Hence sketch the curve \(y = g(x) \). \[6\]

(iv) Show that if \(y = g(x) \) then \(9x^2 + y^2 = 36x \). \[3\]
Fig. 7 shows part of the curve \(y = f(x) \), where \(f(x) = x\sqrt{1+x} \). The curve meets the \(x \)-axis at the origin and at the point \(P \).

\[\int_{-1}^{0} x\sqrt{1+x} \, dx = \int_{0}^{1} \left(u^2 - u^3 \right) \, du. \]

Hence find the area of the region enclosed by the curve and the \(x \)-axis. [8]

(i) Verify that the point \(P \) has coordinates \((-1, 0)\). Hence state the domain of the function \(f(x) \). [2]

(ii) Show that \(\frac{dy}{dx} = \frac{2 + 3x}{2\sqrt{1+x}} \). [4]

(iii) Find the exact coordinates of the turning point of the curve. Hence write down the range of the function. [4]

(iv) Use the substitution \(u = 1 + x \) to show that

PhysicsAndMathsTutor.com
3 Fig. 7 shows the curve \(y = \frac{x^2}{1 + 2x^3} \). It is undefined at \(x = a \); the line \(x = a \) is a vertical asymptote.

(i) Calculate the value of \(a \), giving your answer correct to 3 significant figures. \[3\]

(ii) Show that \(\frac{dy}{dx} = \frac{2x - 2x^4}{(1 + 2x^3)^2} \). Hence determine the coordinates of the turning points of the curve. \[8\]

(iii) Show that the area of the region between the curve and the \(x \)-axis from \(x = 0 \) to \(x = 1 \) is \(\frac{1}{6} \ln 3 \). \[5\]