Question

Given the function \(f(x) = \frac{x(2x-2) - (x-2)^2}{x^2} \), find the derivative \(f'(x) \) and determine the critical points by setting \(f'(x) = 0 \). Use the second derivative test to classify each critical point as a maximum, minimum, or neither.

Solution

1. **Find the derivative**

 \[
 f'(x) = \frac{d}{dx} \left(\frac{x(2x-2) - (x-2)^2}{x^2} \right)
 \]

2. **Simplify**

 \[
 f'(x) = \frac{x(2x-2) - (x-2)^2}{x^2} = \frac{2x^2 - 4x - x^2 + 4x - 4}{x^2} = \frac{x^2 - 4}{x^2} = 1 - 4/x^2
 \]

3. **OR**

 \[
 f(x) = \frac{(x^2 - 4x + 4)}{x} = x - 4 + 4/x
 \]

4. **Differentiate**

 \[
 f'(x) = 1 - 4/x^2
 \]

5. **Simplify correctly**

 \[
 f''(x) = \frac{8}{x^3}
 \]

6. **Critical Points**

 \[
 f'(x) = 0 \Rightarrow x^2 - 4 = 0 \Rightarrow x = \pm 2
 \]

 So, \(Q \) is \((-2, -8)\) and \((2, 0) \) is another point.

7. **Second Derivative Test**

 \[
 f''(-2) = \frac{8}{(-2)^3} = -1 < 0 \Rightarrow \text{maximum at } (-2, -8)
 \]

 \[
 f''(2) = \frac{8}{2^3} = 1 > 0 \Rightarrow \text{minimum at } (2, 0)
 \]

Notes

- Use the quotient (or product) rule for differentiation.
- Condone sign errors only if the final working is correct.
- Correct the exponent, and condone missing brackets.
- Simplify the derivative correctly.
- Ensure that the second derivative test is used correctly.
- State the nature of the stationary points (maximum, minimum) correctly.

NB AG

- Any error in the working should be corrected.
- Any correct use of brackets is highlighted.
- The working must be neat and clear.

PhysicsAndMathsTutor.com
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)</td>
<td>(f(1) = (-1)^{\frac{3}{2}}/1 = 1) (f(4) = (2)^{\frac{3}{2}}/4 = 1)</td>
<td>B1</td>
<td>verifying (f(1) = 1) and (f(4) = 1) or ((x-2)^2 = x \Rightarrow x^2 - 5x + 4 = 0) ((x-1)(x-4) = 0), (x = 1, 4)</td>
</tr>
<tr>
<td>[\int_1^4 (x-2)^2 , dx = \int_1^4 (x-4 + 4/x) , dx]</td>
<td>M1</td>
<td>expanding bracket and dividing each term by (x) (\text{3 terms: } x - 4/x \text{ is M0})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \left[x^2/2 - 4x + 4 \ln x \right]_1^4)</td>
<td>A1</td>
<td>(x^2/2 - 4x + 4 \ln x)</td>
</tr>
<tr>
<td></td>
<td>(= (8 - 16 + 4\ln 4) - (\frac{1}{2} - 4 + 4\ln 1))</td>
<td>A1</td>
<td>(x^2/2 - 4x + 4 \ln x)</td>
</tr>
<tr>
<td></td>
<td>(= 4\ln 4 - 4\frac{1}{2})</td>
<td>A1 cao</td>
<td>o.e. but must combine numerical terms and evaluate (\ln 1) – mark final ans</td>
</tr>
<tr>
<td></td>
<td>Area enclosed = rectangle – curve (= 3 \times 1 - (4\ln 4 - 4\frac{1}{2}) = 7\frac{1}{2} - 4\ln 4)</td>
<td>M1</td>
<td>soi</td>
</tr>
<tr>
<td></td>
<td>[\text{or}]</td>
<td>A1 cao</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area = (\int_1^4 [1 - \left(\frac{x-2}{x} \right)^2] , dx)</td>
<td>M1</td>
<td>no need to have limits</td>
</tr>
<tr>
<td></td>
<td>(= \int_1^4 (5-x - 4/x) , dx)</td>
<td>M1</td>
<td>expanding bracket and dividing each term by (x) (\text{must be 3 terms in } (x-2)^2) expansion</td>
</tr>
<tr>
<td></td>
<td>(= \left[5x - x^2/2 - 4 \ln x \right]_1^4)</td>
<td>A1</td>
<td>(5x - x^2/2 - 4 \ln x)</td>
</tr>
<tr>
<td></td>
<td>(= 20 - 8 - 4 \ln 4 - (5 - \frac{1}{2} - 4\ln 1))</td>
<td>A1</td>
<td>o.e. but must combine numerical terms and evaluate (\ln 1) – mark final ans</td>
</tr>
<tr>
<td></td>
<td>(= 7\frac{1}{2} - 4\ln 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>[g(x) = f(x+1) - 1] (= \frac{(x+1-2)^3}{x+1} - 1)</td>
<td>M1</td>
<td>soi [may not be stated]</td>
</tr>
<tr>
<td></td>
<td>(= \frac{x^3 - 2x + 1 - x - 1}{x+1} = \frac{x^2 - 3x}{x+1})</td>
<td>A1</td>
<td>correctly simplified – not from wrong working</td>
</tr>
</tbody>
</table>
| | | A1 | |}

\(\text{NB AG} \)

PhysicsAndMathsTutor.com
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (iv)</td>
<td>Area is the same as that found in part (ii)</td>
<td>M1</td>
<td>award M1 for ± ans to 8(ii) (unless zero)</td>
</tr>
<tr>
<td></td>
<td>[4\ln 4 - 7\frac{1}{2}]</td>
<td>A1cao</td>
<td>need not justify the change of sign</td>
</tr>
</tbody>
</table>

| 2 (i) | \(xe^{-2x} = mx\)
\(\Rightarrow e^{-2x} = m\)
\(\Rightarrow -2x = \ln m\)
\(\Rightarrow x = -\frac{1}{2} \ln m \quad (*)\)
\(|\text{or}\)
If \(x = -\frac{1}{2} \ln m, y = -\frac{1}{2} \ln m \times e^{\ln m}\)
\(= -\frac{1}{2} \ln m \times m\)
so P lies on \(y = mx\) | M1 | may be implied from 2\(^{nd}\) line |
| | \(\text{dividing by } x, \text{ or subtracting } \ln x\) | M1 | o.e. e.g. \([\ln x] - 2x = \ln m + [\ln x]\) |
| | \(\text{or factorising: } x(e^{-2x} - m) = 0\) | NB AG | or factorising: \(x(e^{-2x} - m) = 0\) |
| | \(|\text{or}\)
If \(x = -\frac{1}{2} \ln m\), \(y = -\frac{1}{2} \ln m \times e^{\ln m}\)
\(= -\frac{1}{2} \ln m \times m\)
so P lies on \(y = mx\) | A1 | substituting correctly |
	\(= -\frac{1}{2} \ln m \times m\)	A1	
		A1	
		[3]	
2 (ii)	let \(u = x\), \(u' = 1\), \(v = e^{-2x}\), \(v' = -2e^{-2x}\)		
d\(y/dx = e^{-2x} - 2xe^{-2x}\)
\(= e^{-2\left(-\frac{1}{2}\ln m\right)} - 2\left(-\frac{1}{2}\ln m\right)e^{-2\left(-\frac{1}{2}\ln m\right)}\)
\(= e^{\ln m} + e^{\ln m} \ln m \quad [= m + m \ln m]\) | M1* | product rule consistent with their derivs |
<p>| | | A1 | o.e. correct expression |
| | | M1dep | subst (x = -\frac{1}{2} \ln m) into their deriv dep |
| | | M1* | |
| | | A1cao | condone (e^{\ln m}) not simplified |
| | | [4] | but not (-2\left(-\frac{1}{2} \ln m\right)), but mark final ans |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Marks</th>
<th>Guidance</th>
</tr>
</thead>
</table>
| 2 (iii) | $m + m \ln m = -m$
$\Rightarrow \quad \ln m = -2$
$\Rightarrow \quad m = e^{-2}$
or
$y + \frac{1}{2} m \ln m = m(1 + \ln m)(x + \frac{1}{2} \ln m) = -1$,
$\Rightarrow 1 + \ln m = -1, \ln m = -2, m = e^{-2}$
At P, $x = 1$
$\Rightarrow \quad y = e^{-2}$
| M1 | their gradient from (ii) = $-m$ | A1 **NB AG**
| | for fully correct methods finding x-intercept of equation of tangent and equating to $-\ln m$ | B2
| | isw approximations | B1
| | not $e^{-2} \times 1$ | |
| (iv) Area under curve = $\int_{0}^{1} xe^{-2x} dx$
$u = x, \quad u' = 1, \quad v' = e^{-2x}, \quad v = -\frac{1}{2} e^{-2x}$
$= \left[-\frac{1}{2} xe^{-2x}\right]_{0}^{1} + \int_{0}^{1} \frac{1}{2} e^{-2x} dx$
$= \left[-\frac{1}{2} xe^{-2x} - \frac{1}{4} e^{-2x}\right]_{0}^{1}$
$= (-\frac{1}{2} e^{-2} - \frac{1}{4} e^{-2}) - (0 - \frac{1}{4} e^{0})$
$\left[= \frac{1}{4} - \frac{1}{4} e^{-2}\right]$
| M1 | parts, condone $v = k e^{-2x}$, provided it is used consistently in their parts formula | A1
| | ignore limits until 3rd A1 | A1
| | fit their v | A1
| | $-\frac{1}{2} xe^{-2x} - \frac{1}{4} e^{-2x}$ o.e. | A1
| | correct expression | A1
| | need not be simplified | A1
| Area of triangle = $\frac{1}{2}$ base \times height
$= \frac{1}{2} \times 1 \times e^{-2}$
So area enclosed = $\frac{1}{4} - 5e^{-2}/4$
| M1 | fit their $1, e^{-2}$ or $[e^{-2}x^2/2]$ | A1
| | o.e. using isosceles triangle | A1cao
| | M1 may be implied from 0.067... | A1
| | isw | A7
3(i)

\[
\int_0^1 \frac{x^3}{1+x} \, dx \quad \text{let } u = 1 + x, \ du = dx
\]

when \(x = 0, u = 1, \) when \(x = 1, u = 2 \)

\[
= \int_1^2 \frac{(u-1)^3}{u} \, du
\]

\[
= \int_1^2 (u^3 - 3u^2 + 3u - 1) \, du
\]

\[
= \left[\frac{u^4}{4} - \frac{u^3}{2} + \frac{u^2}{2} - u \right]_1^2
\]

\[
= \frac{1}{4} - \frac{3}{2} + 1 - 2 - \left(\frac{1}{4} - \frac{1}{2} + 1 - 1 \right)
\]

\[
= \frac{2}{3} - \frac{5}{18}
\]

seen anywhere, e.g. in new limits

B1
- \(a = 1, b = 2 \)
- \((u-1)^3/u \)

B1
- expanding (correctly)

A1 dep
- \(\text{dep } du = \text{dx (o.e.) } AG \)

B1
- \(\left[\frac{1}{3} \frac{3}{2} u^2 - 3u - \ln u \right] \)

M1
- substituting correct limits dep integrated

A1 cao
- must be exact – must be 5/6

must have evaluated \(\ln 1 = 0 \)

3(ii)

\[
y = x^2 \ln(1 + x)
\]

\[
\Rightarrow \quad \frac{dy}{dx} = 2x \cdot \frac{1}{1+x} + 2x \cdot \ln(1+x)
\]

\[
= \frac{x^2}{1+x} + 2x \ln(1+x)
\]

When \(x = 0, \frac{dy}{dx} = 0 + 0 \cdot \ln 1 = 0 \)

(⇒ Origin is a stationary point)

M1
- Product rule

B1
- \(\frac{d}{dx} \ln(1 + x) = \frac{1}{1 + x} \)

A1
- \(\text{cao (oe) mark final ans} \)

or \(\frac{d}{dx} (\ln u) = \frac{1}{u} \text{ where } u = 1 + x \)

M1
- substituting \(x = 0 \) into correct deriv

A1 cao
- **www**

when \(x = 0, \frac{dy}{dx} = 0 \) with no evidence of substituting M1A0 but condone missing bracket in \(\ln(1+x) \)

3(iii)

\[
A = \int_0^1 x^2 \ln(1 + x) \, dx
\]

let \(u = \ln(1 + x), \ dv/dx = x^2 \)

\[
\frac{du}{dx} = \frac{1}{1+x}, \quad v = \frac{x^3}{3}
\]

\[
\Rightarrow \quad A = \left[\frac{x^3}{3} \ln(1 + x) \right]_0^1 - \int_0^1 \frac{x^3}{3+1} \, dx
\]

\[
= \frac{1}{3} \ln 2 - \left(\frac{5}{18} - \frac{1}{3} \ln 2 \right)
\]

\[
= \frac{1}{3} \ln 2 - \frac{5}{18} + \frac{1}{3} \ln 2
\]

\[
= \frac{2}{3} \ln 2 - \frac{5}{18}
\]

B1
- Correct integral and limits

M1
- parts correct

B1
- \(\frac{1}{3} \ln 2 - ... \)

B1 ft
- \(... - 1/3 \) (result from part (i))

A1
- \(\text{cao} \)

condone no dx, limits (and integral) can be implied by subsequent work

u, }du/dx, \ dv/dx and v all correct (oe)

condone missing brackets

condone missing bracket, can re-work from scratch

oe e.g. \(\frac{12 \ln 2 - 5}{18} - \frac{1}{3} \ln 4 - \frac{5}{18} \) etc \ but must have evaluated \(\ln 1 = 0 \)

Must combine the two \(\ln \) terms