Core 3 Numerical Methods Questions

2 Use Simpson’s rule with 5 ordinates (4 strips) to find an approximation to

\[\int_{1}^{3} \frac{1}{\sqrt{1 + x^3}} \, dx \]

giving your answer to three significant figures. \(4\) marks

6 [Figure 1, printed on the insert, is provided for use in this question.]

The curve \(y = x^3 + 4x - 3 \) intersects the \(x \)-axis at the point \(A \) where \(x = a \).

(a) Show that \(a \) lies between 0.5 and 1.0. \(2\) marks

(b) Show that the equation \(x^3 + 4x - 3 = 0 \) can be rearranged into the form \(x = \frac{3 - x^3}{4} \). \(1\) mark

(c) (i) Use the iteration \(x_{n+1} = \frac{3 - x_n^3}{4} \) with \(x_1 = 0.5 \) to find \(x_3 \), giving your answer to two decimal places. \(3\) marks

(ii) The sketch on Figure 1 shows parts of the graphs of \(y = \frac{3 - x^3}{4} \) and \(y = x \), and the position of \(x_1 \).

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x_2 \) and \(x_3 \) on the \(x \)-axis. \(3\) marks

1 The curve \(y = x^3 - x - 7 \) intersects the \(x \)-axis at the point where \(x = a \).

(a) Show that \(a \) lies between 2.0 and 2.1. \(2\) marks

(b) Show that the equation \(x^3 - x - 7 = 0 \) can be rearranged in the form \(x = \sqrt[3]{x + 7} \). \(1\) mark

(c) Use the iteration \(x_{n+1} = \sqrt[3]{x_n + 7} \) with \(x_1 = 2 \) to find the values of \(x_2, x_3 \) and \(x_4 \), giving your answers to three significant figures. \(3\) marks
6 (a) Use the mid-ordinate rule with four strips to find an estimate for \(\int_{1}^{5} \ln x \, dx \), giving your answer to three significant figures. \((3 \text{ marks}) \)

(c) The region \(R \) is bounded by the curve \(y = \sec x \), the \(x \)-axis and the lines \(x = 0 \) and \(x = 1 \).

Find the volume of the solid formed when \(R \) is rotated through \(2\pi \) radians about the \(x \)-axis, giving your answer to three significant figures. \((3 \text{ marks}) \)

1 Use the mid-ordinate rule with four strips of equal width to find an estimate for \(\int_{1}^{5} \frac{1}{1 + \ln x} \, dx \), giving your answer to three significant figures. \((4 \text{ marks}) \)

(b) The diagram shows the curve with equation \(y = 2\sqrt{(x - 1)^3} \) for \(x \geq 1 \).

The shaded region \(R \) is bounded by the curve \(y = 2\sqrt{(x - 1)^3} \), the lines \(x = 2 \) and \(x = 4 \), and the \(x \)-axis.
Find the exact value of the volume of the solid formed when the region \(R \) is rotated through 360° about the \(x \)-axis. \(\quad (4 \text{ marks}) \)

(c) Describe a sequence of two geometrical transformations that maps the graph of \(y = \sqrt{x^3} \) onto the graph of \(y = 2\sqrt{(x - 1)^3} \). \(\quad (4 \text{ marks}) \)

4 [Figure 1, printed on the insert, is provided for use in this question.]

(a) Use Simpson’s rule with 5 ordinates (4 strips) to find an approximation to \(\int_{1}^{2} 3^x \, dx \), giving your answer to three significant figures. \(\quad (4 \text{ marks}) \)

(b) The curve \(y = 3^x \) intersects the line \(y = x + 3 \) at the point where \(x = \alpha \).

(i) Show that \(\alpha \) lies between 0.5 and 1.5. \(\quad (2 \text{ marks}) \)

(ii) Show that the equation \(3^x = x + 3 \) can be rearranged into the form \[x = \frac{\ln(x + 3)}{\ln 3} \] \(\quad (2 \text{ marks}) \)

(iii) Use the iteration \(x_{n+1} = \frac{\ln(x_n + 3)}{\ln 3} \) with \(x_1 = 0.5 \) to find \(x_3 \) to two significant figures. \(\quad (2 \text{ marks}) \)

(iv) The sketch on Figure 1 shows part of the graphs of \(y = \frac{\ln(x + 3)}{\ln 3} \) and \(y = x \), and the position of \(x_1 \).

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x_2 \) and \(x_3 \) on the \(x \)-axis. \(\quad (2 \text{ marks}) \)
Core 3 Numerical Methods Answers

2 \[
\int_{1}^{3} \frac{1}{\sqrt{1+x^3}} \, dx
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.707(1)</td>
</tr>
<tr>
<td>1.5</td>
<td>0.478(1)</td>
</tr>
<tr>
<td>2</td>
<td>0.333(3)</td>
</tr>
<tr>
<td>2.5</td>
<td>0.245(3)</td>
</tr>
<tr>
<td>3</td>
<td>0.189(0)</td>
</tr>
</tbody>
</table>

\[A = \frac{1}{3} \times 0.5 \left[y(1) + y(3) + \frac{4}{3} (y(1.5) + y(2.5)) + 2(y(2)) \right] \]

\[= 0.743 \]

Total 4

6(a) \[f(0.5) = -0.875 \]
\[f(1) = 2 \]
Change of sign \(\Rightarrow \) root

Total 2

(b) \[x^3 + 4x - 3 = 0 \]
\[4x = 3 - x^3 \]
\[x = \frac{3 - x^3}{4} \]

Total 1

AG

(c)(i) \[x_1 = 0.5 \]
\[x_2 = 0.71875 \]
\[x_3 = 0.72 \] AWRT
\[x_4 = 0.66 \]

Total 3

(ii) For cobweb, \(x_1 \) to curve
For \(x_2 \)
For all correct

Total 9
1(a) \[
\begin{align*}
\text{f}(2) &= -1 \\
\text{f}(2.1) &= +0.161 \\
\text{change of sign} \implies 2 < \alpha < 2.1
\end{align*}
\]

\begin{tabular}{|l|c|c|}
\hline
\text{M1} & \text{both attempted} & \\
\hline
\text{A1} & 2 & \\
\hline
\end{tabular}

(b) \[x^3 - x - 7 = 0\]
\[x^3 = x + 7\]
\[x = \sqrt[3]{x + 7}\]

\begin{tabular}{|l|c|c|}
\hline
\text{B1} & \text{AG} & \\
\hline
\end{tabular}

(c) \[x_1 = 2\]
\[x_2 = 2.0801...\]
\[x_3 = 2.0862...\]
\[x_4 = 2.09\]

\begin{tabular}{|l|c|c|}
\hline
\text{M1} & \\
\text{A1} & \text{AWRT 2.08} \\
\text{A1} & \text{AWRT 2.09} \\
\hline
\text{A1} & 3 & \\
\hline
\end{tabular}

\text{Total} \quad 6

6(a) \[\therefore \ln x = 1(\ln 1.5 + \ln 2.5 + \ln 3.5 + \ln 4.5)\]
\[= 4.08\]

\begin{tabular}{|l|c|c|}
\hline
\text{M1} & \text{use of 1.5, 2.5,... ; 3 or 4 correct } x \text{ values} & \\
\text{A1} & \text{AWFW 4 to 4.2} & \\
\text{A1} & 3 & \text{CAO} \\
\hline
\end{tabular}

(c) \[V = (k) \int \sec^2 x \, dx\]
\[= (k) \left[\tan x\right]_0^1\]
\[= 4.89\]

\begin{tabular}{|l|c|c|}
\hline
\text{M1} & \\
\text{A1} & \text{CAO} & \\
\hline
\text{A1} & 3 & \\
\hline
\end{tabular}

1 \[x = 1.5, 2.5, 3.5, 4.5\]
\[\begin{align*}
y_1 &= 0.7115 \\
y_2 &= 0.5218 \\
y_3 &= 0.4439 \\
y_4 &= 0.3993
\end{align*}\]

\[A = 1 \times (y_1 + y_2 + y_3 + y_4) = 2.08\]

\begin{tabular}{|l|c|c|}
\hline
\text{AWRT} & \text{3 correct } y \text{'s} & \\
\text{A1} & \\
\hline
\text{A1} & 4 & \\
\hline
\end{tabular}

\text{Total} \quad 4
8(a) \[A(-1, \pi) \quad B \left(\frac{\pi}{2} \right) \]

<table>
<thead>
<tr>
<th>B1</th>
<th>2</th>
</tr>
</thead>
</table>

(b) \[\cos^{-1} x - 3x - 1 = 0 \]
\[f(0.1) = 0.17 \quad \text{allow 0.2, 0.1} \]
\[f(0.2) = -0.23 \quad \text{allow -0.2} \]
Change of sign : root

<table>
<thead>
<tr>
<th>B1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Or comparing ‘sides’</td>
</tr>
<tr>
<td>A1</td>
<td>2</td>
</tr>
</tbody>
</table>

(c) \[x_1 = 0.1 \]
\[x_2 = 0.1569 = 0.157 \]
\[x_3 = 0.1378 = 0.138 \]
\[x_4 = 0.144 \]

<table>
<thead>
<tr>
<th>M1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 7

(b) \[V = 4 (\pi) \int_2^4 (x-1)^3 \, dx \]
\[= 4 \pi \left[\frac{(x-1)^4}{4} \right]_2^4 \]
\[= \pi (81-1) = 80\pi \]

<table>
<thead>
<tr>
<th>M1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>(\pi) \int y^2 , dx</td>
</tr>
<tr>
<td>M1</td>
<td>[k(x-1)^4] (\pi) or in expanded form</td>
</tr>
<tr>
<td>M1</td>
<td>correct substitution of limits into</td>
</tr>
<tr>
<td>M1</td>
<td>[k(x-1)^4]</td>
</tr>
<tr>
<td>A1</td>
<td>CAO</td>
</tr>
<tr>
<td>OE</td>
<td></td>
</tr>
</tbody>
</table>

(c) Translate
\[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \]
Stretch (I) SF 2 (II)
// y axis (III)

<table>
<thead>
<tr>
<th>M1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>4</td>
</tr>
<tr>
<td>B1</td>
<td>OE</td>
</tr>
<tr>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>for I and (II or III)</td>
</tr>
<tr>
<td>M1</td>
<td>for I and II and III</td>
</tr>
</tbody>
</table>

4(a)
\[\begin{array}{|c|c|c|}
0 & 1 & 3 \\
1 & 1.25 & 3948(2) \\
2 & 1.5 & 6196(2) \\
3 & 1.75 & 838(5) \\
4 & 2 & 9 \\
\end{array} \]
\[A = \frac{1}{3} \times \frac{1}{4} (3 + 4 \times 3.9482 + 2 \times 5.1962 + 9) \\
= 5.46 \]

<table>
<thead>
<tr>
<th>B1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>x values PI</td>
</tr>
<tr>
<td>M1</td>
<td>(4 +) y values correct</td>
</tr>
<tr>
<td>A1</td>
<td>CAO</td>
</tr>
</tbody>
</table>

(b)(i) \[f(x) = 3^x - x - 3 \]
\[f(0.5) = -1.77 \]
\[f(1.5) = 0.696 \]
change of sign : root

| M1A1 | 2 |
(ii) \[3^x = x + 3 \]
\[\ln 3^x = \ln (x + 3) \]
\[x \ln 3 = \ln (x + 3) \]
\[x = \frac{\ln (x + 3)}{\ln 3} \]
M1 correct use of logs
A1 2 correct with no mistakes; AG

(iii) \(x_1 = 0.5 \)
\((x_2 = 1.14) \)
\(x_3 = 1.29 = 1.3 \)
M1
A1 2 CAO

(iv) ![Graph](image)
M1 staircase
A1 2 \(x_2, x_3 \) correct and labelled on x-axis

| Total | 12 |