1. (i) On the same axes, sketch the curves $y = 3^x$ and $y = 3^{2x}$, identifying clearly which is which.

(ii) Given that $3^{2x} = 729$, find in either order the values of 3^x and x.

2. Fig. 8 shows the graph of $\log_{10} y$ against $\log_{10} x$. It is a straight line passing through the points $(2, 8)$ and $(0, 2)$.

![Graph](image)

Fig. 8

Find the equation relating $\log_{10} y$ and $\log_{10} x$ and hence find the equation relating y and x.

3. Use logarithms to solve the equation $3^{x+1} = 5^{2x}$. Give your answer correct to 3 decimal places.
4 The thickness of a glacier has been measured every five years from 1960 to 2010. The table shows the reduction in thickness from its measurement in 1960.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>h m</td>
<td>0.7</td>
<td>1.0</td>
<td>1.7</td>
<td>2.3</td>
<td>3.6</td>
<td>4.7</td>
<td>6.0</td>
<td>8.2</td>
<td>12</td>
<td>15.9</td>
</tr>
</tbody>
</table>

An exponential model may be used for these data, assuming that the relationship between h and t is of the form $h = a \times 10^{bt}$, where a and b are constants to be determined.

(i) Show that this relationship may be expressed in the form $\log_{10} h = mt + c$, stating the values of m and c in terms of a and b. [2]

(ii) Complete the table of values in the answer book, giving your answers correct to 2 decimal places, and plot the graph of $\log_{10} h$ against t, drawing by eye a line of best fit. [4]

(iii) Use your graph to find h in terms of t for this model. [4]

(iv) Calculate by how much the glacier will reduce in thickness between 2010 and 2020, according to the model. [2]

(v) Give one reason why this model will not be suitable in the long term. [1]

5 A hot drink when first made has a temperature which is 65°C higher than room temperature. The temperature difference, d°C, between the drink and its surroundings decreases by 1.7% each minute.

(i) Show that 3 minutes after the drink is made, $d = 61.7$ to 3 significant figures. [2]

(ii) Write down an expression for the value of d at time n minutes after the drink is made, where n is an integer. [1]

(iii) Show that when $d < 3$, n must satisfy the inequality

$$n > \frac{\log_{10} 3 - \log_{10} 65}{\log_{10} 0.983}.$$

Hence find the least integer value of n for which $d < 3$. [4]

(iv) The temperature difference at any time t minutes after the drink is made can also be expressed as $d = 65 \times 10^{-kt}$, for some constant k. Use the value of d for 1 minute after the drink is made to calculate the value of k. Hence find the temperature difference 25.3 minutes after the drink is made. [4]
6. Fig. 6 shows the relationship between $\log_{10} x$ and $\log_{10} y$.

\[y = 5x \]

Find y in terms of x. [5]

7. The graph of $y = ab^x$ passes through the points (1, 6) and (2, 3.6). Find the values of a and b. [3]

8. Using logarithms, rearrange $p = st^n$ to make n the subject. [3]

9. You are given that

$$\log_a x = \frac{1}{2} \log_a 16 + \log_a 75 - 2 \log_a 5.$$

Find the value of x. [3]