<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th></th>
<th>(ii)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\left[\frac{dy}{dx} \right] = 4 \times 2 + 3) or (11) isw</td>
<td>(9 = \text{their} \ (4 \times 2 + 3) \times 2 + c)</td>
<td>(4x^2 + 3x)</td>
<td>(\frac{4x^2 + 3x}{2})</td>
</tr>
<tr>
<td></td>
<td>(y = 11x - 13) or (y = 11x + c) and (c = -13) stated isw</td>
<td>(2x^2 + 3x + c)</td>
<td>(y = 2x^2 + 3x + c)</td>
<td>(y = 2x^2 + 3x + c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2 \times 2^2 + 3 \times 2 + c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y = 2x^2 + 3x - 5) cao</td>
<td>(1, 0) and ((-2.5, 0)) oe cao</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x = \frac{-3}{4})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(y = \frac{-49}{8})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M1*</th>
<th></th>
<th>M1*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>or (y - 9 = \text{their} \ (4 \times 2 + 3) \times (x - 2))</td>
<td></td>
<td>or see “2” and “+ c”; may be earned later eg after attempt to find (c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1dep*</td>
<td></td>
<td>M1dep*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A1)</td>
<td></td>
<td>(A1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or (y - 9 = 11(x - 2)) isw</td>
<td></td>
<td>must include constant, which may be implied by answer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>allow first 4 marks for (y = 2x^2 + 3x + c) and (c = -5) stated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>or for (x = 1, y = 0) and (x = -2.5, y = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B0 for just stating (x = 1) and (x = -2.5)</td>
</tr>
</tbody>
</table>

| | | | | |
Question 1

Part (iii)

Substitution to obtain

\[y = f(2x) \text{ in polynomial form} \]

\[y = (2x - 1)(4x + 5) \text{ or } y = 8x^2 + 6x - 5 \]

\[y = 2\left(2x + \frac{3}{4}\right)^2 - \frac{49}{8} \]

\[\left(-\frac{3}{8}, -\frac{49}{8}\right) \text{ o.e.} \]

M1

- \(f(x) \) must be the quadratic in \(x \) with linear and constant term obtained in part (ii), may be in factorised form

A1FT

- must be simplified to one of these forms, **FT** their quadratic in \(x \) with linear and constant term obtained in part (ii)

B1

- or **FT** their (both non-zero) co-ordinates for minimum point or their quadratic in \(x \) with linear and constant term obtained in part (ii)

-or their \(x = 1 \rightarrow \) their 0.5 and their \(x = -2.5 \rightarrow \) their \(x = -1.25 \)

oe

Question 2

\[\frac{dy}{dx} = 32x^3 \text{ c.a.o.} \]

M1

\[\frac{dy}{dx} = \frac{-1}{\text{their}^4} \]

M1

\[\text{grad normal} = \frac{-1}{\text{their}^4} \]

M1

- when \(x = \frac{1}{2} \), \(y = 4\frac{1}{2} \text{ o.e.} \)

B1

\[y - 4\frac{1}{2} = -\frac{1}{4}(x - \frac{1}{2}) \text{ i.s.w} \]

A1

\[y = -\frac{1}{4}x + 4\frac{5}{8} \text{ o.e.} \]

[3]

\[\frac{dy}{dx} = 32x^3 \text{ c.a.o.} \]

must see \(kx^3 \)

their 4 must be obtained by calculus
Question 3

Part (i)
\[
\frac{dy}{dx} = 4x^3
\]
when \(x = 2\), \(\frac{dy}{dx} = 32\) s.o.i.

when \(x = 2\), \(y = 16\) s.o.i.

\(y = 32x - 48\) c.a.o.

- **Marking Scheme:**
 - M1 for correct approach
 - A1 for correct working
 - B1 for correct final answer
 - A1 for correct final answer
 - i.s.w.

Part (ii)
\[
34.481
\]

- **Marking Scheme:**
 - M1 for \(\frac{2.1^2 - 2^2}{0.1}\)

Part (iii)

(A)
\[
16 + 32h + 24h^2 + 8h^3 + h^4\text{ c.a.o.}
\]

- **Marking Scheme:**
 - B2 for 4 terms correct
 - B1 for 3 terms correct

(B)
\[
32 + 24h + 8h^2 + h^3\text{ or ft}
\]

- **Marking Scheme:**
 - B1 if one error

(C)
\[
as h \to 0, \text{ result } \to \text{ their } 32 \text{ from } (iii) (B)
\]

- **Marking Scheme:**
 - 1

Gradient of tangent is limit of gradient of chord

Question 4

Part (i)
\[
6.1
\]

Part (ii)
\[
\frac{(3 + h)^2 - 7 - (3^2 - 7)}{h}
\]

- Marking Scheme:
 - M1 for correct numerator
 - A1 for correct working

Numerator = \(6h + h^2\)

\(6 + h\)

Part (iii)

- Marking Scheme:
 - M1 for correct working
 - A1 for correct final answer

As \(h\) tends to 0,

Gradient tends to \(6\) o.e.

Part (iv)
\[
y - 2 = "6" (x - 3) \text{ o.e.}
\]
\[
y = 6x - 16
\]

- **Marking Scheme:**
 - M1 for correct working
 - A1 for correct final answer

6 may be obtained from 3

Part (v)

At \(P\), \(x = 16/6\) o.e. or ft

At \(Q\), \(x = \sqrt{7}\)

0.021 cao

- **Marking Scheme:**
 - M1 for correct working
 - M1 for correct working
 - A1 for correct working
 - 2

- **Marking Scheme:**
 - 3
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 5 | (i) ad of chord = \((2^{3.1} - 2^{3})/0.1\) o.e.
 = 5.74 c.a.o.

(ii) correct use of A and C where
 for C, \(2.9 < x < 3.1\)
 answer in range (5.36, 5.74)
| M1 | M1 | s.c.1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)
 | A1 | A1 |
 | | | 4

PhysicsAndMathsTutor.com