Edexcel Maths C2

Topic Questions from Papers

Exponentials and Logarithms
2. Solve

(a) \(5^x = 8 \), giving your answer to 3 significant figures,

(b) \(\log_2(x + 1) - \log_2 x = \log_2 7 \).
3. (i) Write down the value of \(\log_a 36 \).

(ii) Express \(2 \log_a 3 + \log_a 11 \) as a single logarithm to base \(a \).
4. Solve the equation

\[5^x = 17, \]

giving your answer to 3 significant figures.

(Total 3 marks)
6. (a) Find, to 3 significant figures, the value of \(x \) for which \(8^x = 0.8 \).

(b) Solve the equation

\[
2\log_3 x - \log_3 7x = 1.
\]
5. Given that a and b are positive constants, solve the simultaneous equations

\[a = 3b, \]
\[\log_3 a + \log_3 b = 2. \]

Give your answers as exact numbers.
4. (a) Find, to 3 significant figures, the value of \(x \) for which \(5^x = 7 \).

(b) Solve the equation \(5^{2x} - 12(5^x) + 35 = 0 \).
4. Given that $0 < x < 4$ and

$$\log_5 (4 - x) - 2 \log_5 x = 1,$$

find the value of x. (6)
8. (a) Find the value of y such that

$$\log_2 y = -3$$

(b) Find the values of x such that

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$
5. (a) Find the positive value of x such that

$$\log_x 64 = 2$$

(b) Solve for x

$$\log_2 (11 - 6x) = 2 \log_2 (x - 1) + 3$$
7. (a) Given that

\[2 \log_3(x-5) - \log_3(2x-13) = 1, \]

show that \(x^2 - 16x + 64 = 0. \) (5)

(b) Hence, or otherwise, solve \(2 \log_3(x-5) - \log_3(2x-13) = 1. \) (2)
8. (a) Sketch the graph of \(y = 7^x, \quad x \in \mathbb{R} \), showing the coordinates of any points at which the graph crosses the axes.

(b) Solve the equation

\[
7^{2x} - 4(7^x) + 3 = 0
\]

giving your answers to 2 decimal places where appropriate.
3. Find, giving your answer to 3 significant figures where appropriate, the value of x for which

(a) $5^x = 10$.

(b) $\log_3(x - 2) = -1$.

(2)

(2)
4. Given that \(y = 3x^2 \),

(a) show that \(\log_3 y = 1 + 2 \log_3 x \)

(b) Hence, or otherwise, solve the equation

\[1 + 2 \log_3 x = \log_3 (28x - 9) \]
2. Find the values of x such that

$$2 \log_3 x - \log_3(x - 2) = 2$$
6. Given that \(2 \log_2(x+15) - \log_2 x = 6\)

 (a) Show that \(x^2 - 34x + 225 = 0\)

 (b) Hence, or otherwise, solve the equation \(2 \log_2(x+15) - \log_2 x = 6\)
6. Given that \(\log_3 x = a \), find in terms of \(a \),

(a) \(\log_3 (9x) \)

(b) \(\log_3 \left(\frac{x^5}{81} \right) \)

(giving each answer in its simplest form.

(c) Solve, for \(x \),

\[
\log_3 (9x) + \log_3 \left(\frac{x^5}{81} \right) = 3
\]

(giving your answer to 4 significant figures.)
Question 6 continued
7. (i) Find the exact value of \(x \) for which

\[
\log_2(2^x) = \log_2(5x + 4) - 3
\]

(ii) Given that

\[
\log_a y + 3\log_a 2 = 5
\]

express \(y \) in terms of \(a \).

Give your answer in its simplest form.
Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

\[a^2 = b^2 + c^2 - 2bc \cos A \]

Binomial series

\[(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{r}a^{n-r}b^r + \ldots + b^n \quad (n \in \mathbb{N})\]

where \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \)

\[(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \ldots + \frac{n(n-1)\ldots(n-r+1)}{1 \times 2 \times \ldots \times r}x^r + \ldots \quad (|x|<1, \ n \in \mathbb{R})\]

Logarithms and exponentials

\[\log_a x = \frac{\log_b x}{\log_b a} \]

Geometric series

\[u_n = ar^{n-1} \]

\[S_n = \frac{a(1-r^n)}{1 - r} \]

\[S_n = \frac{a}{1 - r} \quad \text{for} \quad |r| < 1 \]

Numerical integration

The trapezium rule:

\[\int_{a}^{b} y \ dx \approx \frac{1}{2} h \{y_0 + y_n + 2(y_1 + y_2 + \ldots + y_{n-1})\}, \text{ where } h = \frac{b-a}{n} \]
Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times$ slant height

Arithmetic series

\[u_n = a + (n - 1)d \]

\[S_n = \frac{1}{2} n(a + l) = \frac{1}{2} n[2a + (n - 1)d] \]