<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 1 | \(c = 6 \)
 \(k = -7 \) | | 1 | M1 for \(f(2) = 0 \) used or for long division as far as \(x^3 - 2x^2 \) in working | 3 |
| 2 | (i) \((x + 1)(2x - 3) = 9 \) o.e.
 \(2x^2 - x - 3 = 18 \) or \(x^2 - \frac{1}{2}x - 3/2 = 9 \)
 (ii) \((x - 7)(x + 3) \)
 -3 and \(\frac{7}{2} \) o.e. or ft their factors base 4, height 4.5 o.e. cao | M1 | for clear algebraic use of \(\frac{1}{2} bh \); condone \((x + 1)(2x - 3) = 18 \)
 allow \(x \) terms uncollected.
 NB ans \(2x^2 - x - 21 = 0 \) given
 NB B0 for formula or comp. sq.
 if factors seen, allow omission of -3
 B0 if also give \(b = -9, h = -2 \) | 5 |
| 3 | \(f(2) = 3 \) seen or used
 \(2^3 + 2k + 5 = 3 \) o.e.
 \(k = -5 \) | M1 | allow M1 for divn by \((x - 2) \) with \(x^2 + 2x + (k + 4) \) or \(x^2 + 2x - 1 \) obtained
 alt: M1 for \((x - 2)(x^2 + 2x - 1) + 3 \) (may be seen in division) then M1dep (and B1) for \(x^3 - 5x + 5 \)
 alt divn of \(x^3 + kx + 2 \) by \(x - 2 \) with no rem. | 3 |
| 4 | \(f(1) \) used
 \(1^3 + 3 \times 1 + k = 6 \)
 \(k = 2 \) | M1 | or division by \(x - 1 \) as far as \(x^2 + x \)
 or remainder = \(4 + k \)
 B3 for \(k = 2 \) www | 3 |
<table>
<thead>
<tr>
<th></th>
<th>5 + 2k soi</th>
<th>M1</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>attempt at f(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 + 36 + m = 59 o.e.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m = −4 cao</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M1
- allow M1 for expansion with $5x^3 + 2kx^3$ and no other x^3 terms
- or M1 for $(29 − 5) / 2$ soi

A1
- must substitute 3 for x in cubic not product
- or long division as far as obtaining $x^2 + x$ in quotient
- or from division $m − (−63) = 59$ o.e.
- or for $27 + 3k + m = 59$ or ft their k
| 6 (i) | trials of at calculating \(f(x) \) for at least one factor of 30
details of calculation for \(f(2) \) or \(f(-3) \) or \(f(-5) \)
attempt at division by \((x - 2)\) as far as \(x^3 - 2x^2\) in working
correctly obtaining \(x^2 + 8x + 15\)
factorising a correct quadratic factor
\((x - 2)(x + 3)(x + 5)\) | **M1** | **M0** for division or inspection used
A1 | **M0** for division or inspection used
A1 | **M0** for division or inspection used
A1 |

| 6 (ii) | sketch of cubic right way up, with two turning points
values of intns on x axis shown, correct \((-5, -3, \text{and} 2)\) or ft from their factors/roots in (i)
y-axis intersection at \(-30\) | **B1** | 0 if stops at \(x\)-axis
B1 | 0 if stops at \(x\)-axis
B1 | 0 if stops at \(x\)-axis
B1 | 0 if stops at \(x\)-axis |

| | or equiv for \((x + 3)\) or \((x + 5)\); or inspection with at least two terms of quadratic factor correct
or B2 for another factor found by factor theorem
for factors giving two terms of quadratic correct; M0 for formula without factors found
condone omission of first factor found; ignore ‘= 0’ seen
allow last four marks for \((x - 2)(x + 3)(x + 5)\) obtained; for all 6 marks must see factor theorem use first |

| | or equiv for \((x + 3)\) or \((x + 5)\); or inspection with at least two terms of quadratic factor correct
or B2 for another factor found by factor theorem
for factors giving two terms of quadratic correct; M0 for formula without factors found
condone omission of first factor found; ignore ‘= 0’ seen
allow last four marks for \((x - 2)(x + 3)(x + 5)\) obtained; for all 6 marks must see factor theorem use first |

| | or equiv for \((x + 3)\) or \((x + 5)\); or inspection with at least two terms of quadratic factor correct
or B2 for another factor found by factor theorem
for factors giving two terms of quadratic correct; M0 for formula without factors found
condone omission of first factor found; ignore ‘= 0’ seen
allow last four marks for \((x - 2)(x + 3)(x + 5)\) obtained; for all 6 marks must see factor theorem use first |
<p>| 6 (iii) | $(x - 1)$ substituted for x in either form of eqn for $y = f(x)$ | M1 | correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4, -2$ and 3 or ft $(x - 1)^3$ expanded correctly (need not be simplified) or two of their factors multiplied correctly or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $[x^3 - 3x^2 + x^2 + 2x^2 + 8x - 6x - 12x - 24]$ unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x + 1)$ subst and correct exp of $(x + 1)^3$ or two of their factors ft or, for those using given answer: M1 for roots stated or used as $-4, -2$ and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^3 or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>f(−2) used −8 + 36 − 40 + 12 = 0</td>
<td>M1</td>
<td>1</td>
</tr>
<tr>
<td>ii</td>
<td>divn attempted as far as (x^2 + 3x) (x^2 + 3x + 2) or ((x + 2)(x + 1))</td>
<td>M1</td>
<td>2</td>
</tr>
<tr>
<td>iii</td>
<td>((x + 2)(x + 6)(x + 1))</td>
<td>A1</td>
<td>2</td>
</tr>
<tr>
<td>iv</td>
<td>sketch of cubic the right way up through 12 marked on y axis intercepts (-6, -2, -1) on x axis (x(x^2 + 9x + 20)) (x(x + 4)(x + 5)) (x = 0, -4, -5)</td>
<td>G1</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>or M1 for division by ((x + 2)) attempted as far as (x^3 + 2x^2) then A1 for (x^2 + 7x + 6) with no remainder or inspection with (b = 3) or (c = 2) found; B2 for correct answer allow seen earlier; M1 for ((x + 2)(x + 1)) with 2 turning pts; no 3rd tp curve must extend to x > 0 condone no graph for (x < -6) or other partial factorisation or B1 for each root found e.g. using factor theorem</td>
<td>M1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>3</td>
</tr>
</tbody>
</table>