1 (i) Solve the equation \(2x^2 + 3x = 0.\) \[2\]

(ii) Find the set of values of \(k\) for which the equation \(2x^2 + 3x - k = 0\) has no real roots. \[3\]

2 Make \(x\) the subject of the equation \(y = \frac{x + 3}{x - 2}.\) \[4\]

3 Solve the equation \(y^2 - 7y + 12 = 0.\)

Hence solve the equation \(x^4 - 7x^2 + 12 = 0.\) \[4\]

4 (i) Write \(\sqrt{48} + \sqrt{3}\) in the form \(a\sqrt{b},\) where \(a\) and \(b\) are integers and \(b\) is as small as possible. \[2\]

(ii) Simplify \(\frac{1}{5 + \sqrt{2}} + \frac{1}{5 - \sqrt{2}}.\) \[3\]

5 Solve the equation \(\frac{4x + 5}{2x} = -3.\) \[3\]

6 Make \(a\) the subject of the equation

\[2a + 5c = af + 7c.\] \[3\]
7 Find the set of values of k for which the equation $2x^2 + kx + 2 = 0$ has no real roots. [4]

8 One root of the equation $x^3 + ax^2 + 7 = 0$ is $x = -2$. Find the value of a. [2]

9 n is a positive integer. Show that $n^2 + n$ is always even. [2]

10 Make C the subject of the formula $P = \frac{C}{C + 4}$. [4]

11 (i) Find the range of values of k for which the equation $x^2 + 5x + k = 0$ has one or more real roots. [3]

(ii) Solve the equation $4x^2 + 20x + 25 = 0$. [2]