OCR Computer Science A Level

2.1.3 Thinking Procedurally

Concise Notes
Specification:

2.1.3 a)
- Identify the components of a problem

2.1.3 b)
- Identify the components of a solution to a problem

2.1.3 c)
- Determine the order of the steps needed to solve a problem

2.1.3 d)
- Identify sub-procedures necessary to solve a problem
Identify the components of a problem

- Breaking a problem down is the first stage of thinking procedurally.
- This process is called **problem decomposition**.
- This breaks a large, complex problem down into smaller subproblems which can be solved more easily.
- The project becomes easier to manage and can be divided between a team.
- **Top-down design**, also known as stepwise refinement, is commonly used to do this.

```
Book reservation system problem
    Level 1
      Borrower input
        Level 2
          Borrower name
          Book details
          Collection location
          Check book availability
      Level 2
      Process request
        Print estimated arrival date
        Display account details
      Level 2
      Confirm request
        Level 3
```

- This divides problems into **levels** of complexity.
- Problems are broken down into subproblems until each subproblem is a single task.
- Each subproblem can then be solved using a single subroutine.
- Subroutines can be developed and tested separately, so they are self-contained.

Components of a solution and Sub-procedures

- Details about how each component is implemented are considered.
- Just as we broke down the problem, we now **build-up to its solution**.
- Need to consider the lowest-level components from top-down design and how they can best be solved.
 - Can this be implemented as a function or a procedure?
 - What inputs are required?
 - What output does the subroutine need to produce?
- Tasks which can be solved using an already **existing module** are identified.
Order of steps needed to solve a problem

- When constructing the final solution, thinking about the order in which operations are performed is important.
- Programs may require certain inputs to be entered in a particular order by the user before processing can occur.
- Inputs need to be validated, and this must occur before this data is used.
- In some cases, it may be possible for several subroutines to be executed simultaneously depending on the data and inputs the subroutine requires.
- Programmers should decide on the order in which subroutines are executed, and how they interact with each other, based on their role in solving the problem.
- Programs should also be built so operations cannot be carried out in an order that will raise an error or does not make logical sense.