<table>
<thead>
<tr>
<th>Statement</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>The substance is a gas</td>
<td></td>
</tr>
<tr>
<td>The substance is a liquid</td>
<td></td>
</tr>
<tr>
<td>The substance is ionic</td>
<td></td>
</tr>
<tr>
<td>The substance is a solid metal</td>
<td></td>
</tr>
</tbody>
</table>

more than one line drawn from a variable negates the mark

(b) Carbon

1

(c) It has delocalised electrons

1

(d) the atoms / particles / ions are different sizes

do not accept molecules

1

so there are no rows / layers to slide

accept the layers are disrupted

1
(e) \(\frac{2}{27} \times 100 \)

7.4%

allow 7.4% with no working shown for 2 marks

(f) Mixture
M2. (a) (i) C
 (ii) B
 (iii) A
 (iv) D

(b) (i) SO$_2$
 (ii) shared
 (iii) covalent

[7]
M3. (a) sodium loses (electron)

\[\text{sharing / covalent / metallic} = \text{max} \, 2 \]

chlorine gains (electron)

1 or an (electron)

(b) (i) Have no overall electric charge

(ii) Should iodine be added to salt?

reason
any one from:
• cannot be done by experiment
 accept difficult to get / not enough evidence
• based on opinion / view
 allow must be done by survey
• ethical or economic issue.

(c) (i) nitric (acid)

(ii) an alkali

(iii) indicator
 accept any named acid base indicator

(d) (i) Crystallisation

(ii) fertiliser
 allow to help crops grow
(iii) any one from:
 • pressure
 allow concentration
 • temperature
 ignore heat
 • catalyst.
M4. (a) any one from:

- protection / improve lifespan
- improve appearance.

(b) (i) Bleach

(ii) Hydrogen is less reactive than sodium

(iii) 1 bonding pair of electrons 6 unbonded electrons on Cl
- accept dot, cross or e or – or any combination

(iv) Covalent

(v) Hydrogen chloride has a low boiling point.

Hydrogen chloride is made of simple molecules.

(c) (i) oxygen
- accept carbon dioxide

(ii) aluminium ions are positive

so are attracted (to the negative electrode)
- allow opposites attract

(iii) Reduction

(iv) slide
- allow move

(d) (i) C
(ii) strong covalent bonds
(a) (i) high
(ii) hundred

(b) hard

(c) (i) carbon
(ii) four
(iii) covalent
(iv) all

[7]
M6. (a) four

covalent

(b) because it has a high melting point
accept it won’t melt
accept it won’t decompose or react
allow withstand high temperatures
ignore boiling point

(c) thin
M7. (a) **layers**

which have weak forces / attractions / bonds between them

second mark must be linked to layers

or

which can slide over each other or separate

ignore references to rubbing

(b) **covalent**