This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
1

(a)
(i) nitrogen
(ii) sulfur
(iii) iodine
(iv) helium
(v) nickel
(vi) iodine

(b) substance containing only 1 type of atom / substance which cannot be broken down further by chemical means

(c) Any 3 of:
conducts electricity / conducts heat / conducts shiny / lustrous
ductile / can be drawn into wires
malleable / can be shaped
ALLOW: high boiling point / high melting point / solid at room temperature
ALLOW: rings when hit / sonorous

[Total: 10]

2

(a)
(i) pair of bonding electrons
8 electrons around chlorine and no additional electrons around hydrogen

(ii) covalent because has shared (pair of) electrons
ALLOW: low melting point / low boiling point / it is a gas / doesn’t conduct electricity / both non-metals

(b) pH 2

(c)
(i) calcium chloride
carbon dioxide
water

NOTE: do not allow formulae

(ii) 2
calcium chloride
(d) (i) values from 215 to 245 (s) [1]
(ii) 22 (cm³) [1]
(iii) Any 2 of:
 - temperature / mass of magnesium / particle size of magnesium / surface area of magnesium [2]

[Total: 13]

3 (a) 1 mark each correct answer [4]
- carbon / hydrogen
- hydrogen (if carbon given for first marking point) / carbon (if hydrogen given for first marking point)
- similar
- functional

(b) (i)

```
H    H
│     │
H – C – C – O – H
│     │
H    H
```

[2]

(ii) carbon dioxide [1]
- water [1]

(c) (i) COOH ringed [1]
(ii) 7 [1]
(iii) foodstuffs / drinks / cosmetics / water
- IGNORE: generalised answers e.g. kitchen / cleaning [1]

[Total: 11]
4 (a) Any 4 of: [4]

- both contain carbon atoms
- both have covalent bonding
- both are giant structures / lattices
- both contain rings / have hexagonal patterns / rings of 6 atoms
- in diamond, atoms arranged tetrahedrally
- in graphite, atoms arranged in layers
- flat rings in graphite
- bent rings in diamond
- all bonds same length in diamond
- graphite has some longer bonds / weaker bonds
- in diamond, each C atom joined to 4 others
- in graphite, each C atom joined to 3 others

(b) lime water; [1]
 turns milky / cloudy / white ppt [1]
 2nd mark dependent on correct reagent [1]

(c) poisonous / kills you / toxic [1]
 \textbf{ALLOW:} harmful / higher level answers referring to combining with haem
 \textbf{IGNORE:} causes respiration problems / damages lungs

(d) oxygen removed from iron oxide [1]
 \textbf{ALLOW:} oxidation number of \textit{iron} decreases / \textit{iron} gains electrons / CO becomes oxidised / oxygen adds to CO

(e) limestone [1]
 air [1]

[Total: 10]

5 (a) filter paper / chromatography paper [1]
 solvent / alcohol / other suitable solvent [1]
 \textbf{NOT:} leaves / pigments in solvent [1]

(b) X drawn on base line [1]

(c) chromatography [1]

(d) (i) 2nd box down ticked / aqueous nickel(II) sulfate [1]
 (ii) nickel [1]
 (iii) cathode [1]
(e) protection from corrosion / make it less reactive / make it unreactive [1]
better appearance / more shiny [1]

(f) (i) $6\text{H}_2\text{O}$ [1]

(ii) reversible reaction / equilibrium reaction / reaction goes both ways / reaction goes backwards as well (as forwards) [1]
IGNORE: reaction goes backwards / it is the reverse reaction

(iii) add water (to white nickel(II) chloride) / hydrate (white nickel(II) chloride) [1]

[Total: 12]

6 (a) Any 4 of: [4]

- in steam, molecules are far apart
- in water, molecules are close together
- in steam, molecules are moving very fast
- in water, molecules are moving slowly / sliding over each other
- in steam more randomness in arrangement of molecules

NOTE: molecules are further apart in steam (than in water) = 2 marks
NOTE: molecules move faster in steam (than in water) = 2 marks
NOTE: for molecules the word particles can be used
NOT: implication of particles ‘apart’ in liquids

(b) (i) substance which dissolves another / it dissolves a solute / substance which dissolves a solute / it dissolves something; [1]

(ii) ethanol [1]
IGNORE: alcohol

(c) endothermic [1]

(d) 1st box ticked /aqueous ammonium chloride [1]

(e) (i) LiOH on right [1]
2 on left (mark dependent on LiOH being correct) [1]

(ii) 20 g [1]

[Total: 11]

7 (a) (i) copper [1]

(ii) (copper is) better electrical conductor / iron is worse conductor [1]
IGNORE: copper is a good conductor
(iii) does not conduct (electricity) \[1\]

(iv) lead \[1\]

(v) stronger / has more strength
IGNORE: tougher / harder / less malleable \[1\]

(vi) lead \[1\]

(b) (i) zinc \[1\]

(ii) (zinc) hydroxide
ALLOW: error carried forward from wrong metal in part (b)(i) \[1\]

(c) C,B,D,A \[1\]

(d) CuCl$_2$
ALLOW: Cl$_2$Cu \[1\]

(e) positive electrode: chlorine
negative electrode: copper
ALLOW: 1 mark for chlorine and copper reversed \[1\]

(f) chlorine / Cl$_2$ \[1\]

[Total: 13]