READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may need to use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES

Answer all questions.
A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
1 The diagram shows the structures of some substances containing carbon.

(a) Answer these questions using the letters A, B, C, D, E or F.

(i) Which one of these structures is ionic? .. [1]

(ii) Which one of these structures represents ethanol? .. [1]

(iii) Which one of these structures represents a gas which turns limewater milky? .. [1]

(iv) Which one of these structures is an unsaturated hydrocarbon? [1]

(b) Describe a chemical test for an unsaturated hydrocarbon.

test ..

result ... [2]
(c) State the chemical name of structure B.

--- [1]

(d) Structure F has several uses. Which one of the following is a correct use of structure F? Tick one box.

for cutting metals

[]

as a lubricant

[]

for filling balloons

[]

as an insulator

[] [1]

(e) The structures A to E are compounds. What do you understand by the term compound?

.. [1]

..

(f) State the type of bonding in structure A.

.. [1]

[Total: 10]
The diagram shows a statue in a park in an industrial town. The statue is made from limestone.

(a) State the name of the chemical present in limestone.

(b) Use ideas about the chemistry of atmospheric pollutants to suggest how and why the statue changes over 20 years.

(c) Parts of the statue are joined together with iron pins. After 30 years, the arm falls off the statue. Suggest why the arm falls off.
(d) Iron has several isotopes.

(i) What do you understand by the term *isotopes*?

... [1]

(ii) The table shows the number of subatomic particles in an atom of iron.

<table>
<thead>
<tr>
<th>type of particle</th>
<th>number of particles</th>
<th>relative charge on the particle</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>neutron</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>proton</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table to show the relative charge on each particle. [3]

(iii) State the number of nucleons in this isotope of iron.

... [1]

(e) Some isotopes are radioactive. State one industrial use of radioactive isotopes.

... [1]

(f) Iron reacts with very dilute nitric acid.

\[
\text{Fe} + 2\text{HNO}_3 \rightarrow \text{Fe(NO}_3)_2 + \text{H}_2
\]

Write a word equation for this reaction. [1]

[Total: 13]
The table shows the concentration of some ions present in seawater.

<table>
<thead>
<tr>
<th>name of ion</th>
<th>formula of ion</th>
<th>concentration of ion in g/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromide</td>
<td>Br⁻</td>
<td>0.07</td>
</tr>
<tr>
<td>calcium</td>
<td>Ca²⁺</td>
<td>0.4</td>
</tr>
<tr>
<td>chloride</td>
<td>Cl⁻</td>
<td>19.1</td>
</tr>
<tr>
<td>magnesium</td>
<td>Mg²⁺</td>
<td>1.2</td>
</tr>
<tr>
<td>potassium</td>
<td>K⁺</td>
<td>0.3</td>
</tr>
<tr>
<td>sodium</td>
<td>Na⁺</td>
<td>10.6</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>

(a) Which negative ion has the highest concentration in seawater?

(b) State the name of the ion with the formula SO_4^{2-}.

(c) Which two ions in the table are formed from Group I elements?

(d) When seawater is evaporated a number of different compounds are formed. State the name of the compound which is present in the greatest quantity.

(e) State the names of two ions in the table which move to the cathode when seawater is electrolysed.
(f) When concentrated seawater is electrolysed, chlorine is formed at one of the electrodes.

(i) To which Period in the Periodic Table does chlorine belong? [1]

(ii) Draw the electronic structure of a chlorine molecule. Show only the outer electrons. [2]

(g) Drinking water can be obtained by purifying seawater. Explain why distillation rather than filtration is used to purify seawater for drinking. [2]

[Total: 11]
4 The diagram shows a water treatment works.

(a) State one use of water in industry.

(b) Explain how the sand filter helps purify the water.

(c) The aluminium ions in aluminium sulphate cause clay particles to clump together. Describe a test for aluminium ions.

 test
 result

(d) Why is chlorine added to the water?
(e) Chlorine is in Group VII of the Periodic Table.
When chlorine reacts with a solution of potassium bromide, the solution turns a reddish – brown colour.

(i) Write a word equation for this reaction.

(ii) Explain why iodine does not react with a solution of potassium bromide.

(f) When chlorine reacts with sodium to form sodium chloride, energy is released.

(i) State the name given to a reaction which releases energy.

(ii) What type of bonding is present in sodium chloride?

(iii) Explain what happens in terms of electron transfer when a sodium atom reacts with a chlorine atom.

[Total: 14]
Pure dry crystals of magnesium sulphate can be made by reacting excess magnesium powder with dilute sulphuric acid.

(a) During the reaction, bubbles of a colourless gas are given off. State the name of this gas.

(b) (i) Why is excess magnesium used?

(ii) How is the excess magnesium removed from the reaction mixture?

(c) Describe how you can obtain pure dry crystals of magnesium sulphate from a solution of magnesium sulphate.

(d) (i) Describe one other reaction that makes magnesium sulphate.

(ii) Write a word equation for the reaction you suggested in part (d)(i).

(iii) Magnesium sulphate can be used as a medicine. Explain why the chemicals used in medicines need to be as pure as possible.
(e) A student repeats the experiment using excess sulfuric acid. She obtains 24 g of magnesium sulfate from 4.8 g of magnesium. How much magnesium sulfate can the student obtain from 1.2 g of magnesium?

(f) A sample of 20 g of impure magnesium sulfate contains 19.5 g of magnesium sulfate. Calculate the percentage purity of the magnesium sulfate.
Petroleum is separated into useful fractions by distillation.

(a) (i) What do you understand by the term fraction?

(ii) Which fraction has the lowest boiling point?

(iii) Describe how distillation is used to separate these fractions.

(iv) State a use for

the paraffin fraction,

the bitumen fraction.
(b) Ethene can be made by cracking certain hydrocarbon fractions.

(i) Explain what is meant by the term *cracking*.

(ii) Complete the equation for the cracking of tetradecane, C\textsubscript{14}H\textsubscript{30}.

\[C\textsubscript{14}H\textsubscript{30} \rightarrow \text{---------} + C\textsubscript{2}H\textsubscript{4} \]

[1]

(c) Ethanol is formed when steam reacts with ethene at high pressure and temperature. A catalyst of phosphoric acid is used.

\[\text{ethene} + \text{steam} \rightleftharpoons \text{ethanol} \]

(i) What is the function of the catalyst?

... [1]

(ii) What is the meaning of the symbol \(\rightleftharpoons\)?

... [1]

(iii) Ethanol is also formed when yeast grows in sugar solution. What is this process called? Put a ring around the correct answer.

- addition
- combustion
- fermentation
- neutralisation

[1]

(iv) Phosphoric acid is a typical acid. State what you would observe when a solution of phosphoric acid is added to

- blue litmus, ... [2]
- a solution of sodium carbonate. .. [2]

[Total: 13]
A student placed a crystal of copper(II) sulphate in a beaker of water. After one hour the crystal had completely disappeared and a dense blue colour was observed in the water at the bottom of the beaker. After 48 hours the blue colour had spread throughout the water.

(a) Use the kinetic particle theory to explain these observations.

(b) Describe the arrangement and motion of the particles in the copper(II) sulphate crystal.

(c) Copper ions can be separated from other metal ions by paper chromatography. Draw a labelled diagram of the apparatus for paper chromatography.

In your diagram include:

- the solvent,
- the spot where the solution containing copper ions is placed.
(d) Copper can be purified by electrolysis.

(i) Choose a word from the list below which describes the pure copper foil. Put a ring around the correct answer.

- anion
- anode
- cathode
- cation
- electrolyte

(ii) Describe what happens during this electrolysis to

- the pure copper foil,
- the impure copper foil.

[Total: 9]
The Periodic Table of the Elements

Group

<table>
<thead>
<tr>
<th>1</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>Li</td>
<td>Be</td>
<td>Mg</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
</tr>
<tr>
<td>Na</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
</tr>
<tr>
<td>K</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- a = relative atomic mass
- b = proton (atomic) number
- X = atomic symbol

*58-71 Lanthanoid series

†90-103 Actinoid series

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).