2.9 ALKENES EXTRA QUESTIONS MS

1. (a) \[C_2H_6 \rightarrow C_2H_4 + H_2 \]

(b) Addition

(\text{ignore self or chain as a preface to “addition”})

(penalise additional)

2. Electrophilic addition

M1: curly arrow from \(\text{C}=\text{C} \) bond towards/alongside the side of \(\text{H} \) atom on \(\text{H}_1\text{OSO}_2\text{OH} \)

(penalise M1 if arrow to \(\text{H}_2\text{SO}_4 \) OR to formal charge on \(\text{H} \) of \(\text{H}_1\text{O} \) bond)

(ignore partial charges on \(\text{H} \) and \(\text{O} \) of \(\text{H}_2\text{SO}_4 \), but penalise if these are incorrect on the \(\text{H} \) atom being attacked)

(credit M1 and M2 if correct curly arrow to \(\text{H}^+ \) provided the anion is present)

M2: curly arrow from \(\text{H}–\text{O} \) bond towards/alongside the side of the \(\text{O} \) atom on \(\text{H}–\text{OSO}_2\text{OH} \)

(credit the arrow even if there are partial or formal charges on \(\text{H} \) and \(\text{O} \) but the structure of \(\text{H}_2\text{SO}_4 \) is correct)

M3: correct structure of the carbocation

(penalise use of ‘sticks’ in this structure)

M4: curly arrow from lone pair on an individual oxygen atom of (correct formula for) hydrogen sulphate ion towards/alongside \(\text{C} \) atom bearing the positive charge

(insist that the anion has the correct formula with a lone pair of electrons and a negative charge)

3. Type of isomerism

geometrical or E-Z

Explanation restricted rotation or double bond rigid

4.

Credit 1 mark for a correct formula for but-2-ene
Credit 1 mark for any pair of cis / trans isomers

Geometric(al)

Or cis-trans

Or diastereoisomerism

\text{NOT stereoisomerism}
5. (i) \(\text{C}_6\text{H}_6 + \text{H}_2 \rightarrow \text{C}_6\text{H}_{12} \)
 or \(\text{C}_6\text{H}_{10} + \text{H}_2 \rightarrow \text{C}_6\text{H}_{12} \)

(ii) \(\text{Reagent(s)} \) Br\(_2\) or KMnO\(_4\) (1)

\(\text{Observation(s)} \) no charge (1)

6. (i) Electron pair/ lone pair acceptor OR seeking/bonds with an electron pair
 (insist on reference to a pair of electrons)

(ii) M1 curly arrow from middle of C=C bond of the alkene towards/ alongside the H atom of the H-Br;
 (penalise arrows which go towards one of the carbon atoms)
 (ignore a partial negative charge on the C=C)

M2 curly arrow from H-Br bond to side of Br atom;
 (penalise M2 if there are formal charges on HBr or if there are partial charges which are the wrong)
 (penalise M2 if the single bond has two dots in addition to the line)

M3 correct structure for carbocation;
 (penalise M3 if the positive charge is placed on the end of a bond)
 (penalise M3 if any alkene other than ethene is used - all other marks can score)

M4 curly arrow from lone pair on bromide ion to the positive carbon of carbocation, ensuring that bromide ion has a negative charge;

7. (a) M1 credit a correct structure for either geometrical isomer and its designation as either cis or trans.
 OR credit two correct geometrical isomer structures (ignore the names)
 OR credit two correct names for cis pent-2-ene and trans pent-2-ene (ignore the structures)
 M2 credit a second mark if all four parts of the required structures and names are correct.
 (credit “linear” structures)
 (insist on the alkyl groups being attached clearly by C-C bonds)

(b) (i) M1 curly arrow from middle of C=C bond to H atom on H-Br
 (penalise M1 if partial negative charge or formal positive charge on H)
 (penalise M1 if pent-2-ene is used)

M2 curly arrow from H-Br bond to side of Br atom
M3 correct structure for correct secondary carbocation
M4 curly arrow from lone pair on bromide ion to the positive carbon of carbocation, ensuring that bromide ion has a negative charge.
 (with the exception of pent-2-ene, if the wrong alkene is used, only penalise the structure M3)
 (penalise the use of two dots in addition to a covalent bond, once only)
(ii) 1-bromopentane 1

(iii) M1 2-bromopentane is formed via the secondary (or 2°) carbocation 1
OR 1-bromopentane is formed via the primary (or 1°) carbocation 1
M2 a secondary carbocation is more stable than a primary carbocation - award this mark only if the quality of language justifies the award.
(the argument must involve clear statements about carbocations) 1

8.

(i) \[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{arrow} & \quad \text{M1} \\
\text{H} & \quad \text{Br} & \quad \text{arrow} & \quad \text{M2} \\
\end{align*}
\]

M4 arrow

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{Br} & \quad \text{arrow} & \quad \text{M2} \\
\end{align*}
\]

If wrong carbocation, lose structure mark
If wrong alkene, lose structure mark
Can still score \(\frac{3}{4} \) i.e. penalise M3
Penalise M2 if polarity included incorrectly
no bond between H and Br
bond is shown as \(\text{--} \) or \(\text{---} \)

(ii) \[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_2 & \quad \text{(I)} \\
\end{align*}
\]

credit secondary carbocation here if primary carbocation has been used in (i)
Ignore attack on this carbocation by \(\text{Br} \)

9. (a) melting point increases 1
boiling point increases 1
or they are liquids, the higher members are solids 1
density increases 1
viscosity increases 1 max 2
(b) addition 1
polymerisation 1 2
(c) (i) \(\text{C}_2\text{H}_4 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH} \) - must show the functional group 1
(ii) vapour phase / high temperature (300 ± 50°C) 1
high pressure 70at ± 20 1
if high \(T \) and high \(p \), then only 1 mark, value for either gives 2nd mark
strong acidic catalyst /\(\text{H}_3\text{PO}_4 \) 1
(iii) electrophilic 1
addition 1 2
10. (i)

Isomer 1

\[
\begin{align*}
\text{Cl} & \quad \text{C} \quad \text{C} \\
\text{H} & \quad \text{C} \quad \text{Cl} \\
\text{H} & \quad \text{Y} \\
\text{Cl} & \quad \text{Cl} \\
\end{align*}
\]

Isomer 2

\[
\begin{align*}
\text{Cl} & \quad \text{C} \quad \text{C} \\
\text{H} & \quad \text{C} \quad \text{Cl} \\
\text{H} & \quad \text{Y} \\
\text{Cl} & \quad \text{Cl} \\
\end{align*}
\]

[credit \(\text{H} = \text{C} = \text{C} = \text{H} \) and \(\text{H} = \text{C} = \text{C} = \text{H} \)]

(ii) restricted rotation OR no rotation OR cannot rotate (1)

11. (a) electrophilic addition (1)

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{H}_2\text{C} \\
\text{Cl} & \quad \text{Cl} \\
\end{align*}
\]

Mill Hill High School
(b) \[\text{C}_2\text{H}_4\text{Cl}_2 \quad \text{or} \quad \text{CH}_2 - \text{CH}_2 \quad \text{H} - \text{C} = \text{C} - \text{H} \quad + \quad \text{HCl} \]

(1)

(c) ester or alkoxy alcohol (1)

(d) (i) HO–CH₂–CH₂–OH (1)

(ii) high electron density of double bond (1)

repels OH⁻ or nucleophile (1)

10

12. (a) geometrical or cis-trans isomers (1)

due to restricted rotation (1)

(b) (i)

\[
\begin{align*}
\text{CHBrCH}_2\text{CH}_3 & \quad \text{CH}_2\text{CHBrCH}_3 \\
(1) & \quad (1)
\end{align*}
\]

(ii) electrophilic addition (1)

(iii) \[\text{C}_6\text{H}_5 \quad \text{C} - \text{H} \quad \text{CH}_2\text{CH}_3 \quad (1) \]

\[\text{C}_6\text{H}_5\text{CH}_2 \quad \text{C} - \text{H} \quad \text{CH}_3 \quad (1) \]

both secondary but one is more stable (1)

8

13. (i) the same general formula or \[\text{C}_n\text{H}_{2n} \]

the same functional group / a \text{C} = \text{C} / a double bond / differ from their immediate neighbour by \text{CH}_2

allow ‘all straight chain alkenes’

1

(ii) increases

not just ‘pent-l-ene highest’; allow ‘ethene lowest, pent-l-ene highest’

1
(iii) methylpropene / 2-methylpropene **not** 2-methylprop-2-ene (1)

Ignore wrong punctuation

\[
\begin{align*}
\text{H} & \quad \text{CH}_3 & \quad \text{H} \\
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{C} & \quad \text{H} \\
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} & \quad \text{H} \\
\end{align*}
\]

or

\[
\begin{align*}
\text{H} & \quad \text{C} & \quad \text{C} & \quad \text{CH}_3 \\
\text{H} & \quad \text{H} & \quad \text{H} & \quad \text{CH}_3 \\
\end{align*}
\]

allow 1 mark for but-2-ene with its correct structure (1)

Minimum structure is \(\text{CH}_2=\text{CCH}_3 \) or \(\text{CH}_2=\text{C(\text{CH}_3)}\text{CH}_3 \)

14. **Catalyst** (c) phosphoric acid or (c) sulphuric acid (1)

Not dilute

Accept correct formula

Conditions

\(\text{Temp} = \text{High or 200–500°C} \) (1)

\(\text{Temp} = \text{medium or moderate or 50–100°C} \)

Pressure = High or 5–20 Mpa or 50–200 atoms

Pressure = High or 2–4 Mpa or 20–40 atoms

If wrong, no catalyst given, allow phosphoric acid conditions

Equation

\[
\text{CH}_2=\text{CH}_2 + \text{H}_2\text{O} \rightarrow \text{CH}_3 \text{CH}_2 \text{OH}
\]

*allow \(\text{C}_2\text{H}_4 \) * allow \(\text{C}_2\text{H}_5\text{OH} \)

not \(\text{CH}_2 \text{CH}_2 \)

15. M1 X is 1,2-dibromoethane only (1)

M2 electrophilic addition *(both words needed)* (1)

M3 the double bond is a centre of electron density

OR electron-rich

OR nucleophilic

OR a source of an electron pair

OR a pi cloud/bond of electrons

M4 a dipole or polarity is *induced/created/formed* in the Br-Br bond/molecule -

Award this mark only if the quality of language justifies the award.
16. An appropriate alkene; CH₃CH₂CHCH₂ or (CH₃)₂CCH₂
Isomer 1 1
Isomer 2 1
Position isomerism 1
Mechanism
electrophilic attack and electron shift to Br (Unless H⁺ used) 1
carbocation 1
reaction with carbocation 1
[Allow mechanism marks for the alkene CH₃CHCHCH₃]
[Allow one mark if mechanism for minor product given]

17. (a) Reaction 1 H₂O or steam (1)

(b)

18. ethane tetrahedral (or 3d shown in diagram) (1) 109(±1)° (1)
ethene (trigonal) planar (1) 120° (1)

bond lengths: C – C in ethane longest or }
C = C in ethene shortest { (1)

in ethene: 2 pairs of e/ greater electron density /π bond (1)

19. (a)

2–bromo–2–methylpentane (1)

tertiary carbonium ion more stable than secondary (1)

6
20. CH₂CH₂CH = C—CH₃ → CH₃CH₂CH₂—C—CH₃ → CH₃CH₂CH₂—C—CH₃

electrophilic addn (i) tertiary (i) 2-bromo-2-methylpentane (i)

or CH₃CH₂CH – CHCH₃ → CH₃CH₂CH – CHCH₃

secondary (i) 3-bromo-2-methylpentane (i)

tertiary more stable than secondary (i)

21. (a) A – alkene (i)
 B – halogenoalkane / bromoalkane / alkyl halide / haloalkane (i)
 C – alcohol (ignore primary, secondary) (i)

(b) (i) addition ignore nucleophilic / electrophilic / free radical (i)

(ii) substitution not replacement / displacement (i)

(c) Sodium hydroxide / NaOH / KOH not just hydroxide (i)

(B to C) aqueous not dilute (i)

(B to A) alcoholic (i)

mark alternatives as (d)

ignore references to concentration and temperature

(d) (i) CH₃CH(CH₃)Br + NaOH → CH₃CH=CH₂ + NaBr + H₂O (i)

(ii) CH₃CH(CH₃)Br + NaOH → CH₃CH(CH₃)OH + NaBr (i)

allow molecular formulae C₃H₇Br; C₃H₈O; C₃H₆

allow ionic versions (with OH⁻, Br⁻) 2

(e) arrow from O of OH⁻ to C joined to Br (i)

lone pair not needed

C–Br polarity shown by δ⁺ δ⁻ or

heterolytic fission of C–Br bond shown by arrow from bond between C and Br to Br or

intermediate with partial bonds and minus sign (i)

Br⁻ as product (i)

allow all 3 marks if 1-bromopropane identified as B 3