1.	The reaction between solid barium hydroxide and solid ammonium chloride can be
	represented by the equation below.

$$Ba(OH)_2(s) + 2NH_4Cl(s) \rightarrow BaCl_2(s) + 2NH_3(g) + 2H_2O(l) \qquad \Delta \textit{H}^{\bullet} = +51.1 \text{ kJ mol}^{-1}$$

The standard entropies, at 298 K, for the reactants and products are:

$$S^{\bullet}[Ba(OH)_{2}(s)] = +99.7 \text{ J mol}^{-1}K^{-1}$$

 $S^{\bullet}[NH_{4}Cl(s)] = +94.6 \text{ J mol}^{-1}K^{-1}$
 $S^{\bullet}[BaCl_{2}(s)] = +123.7 \text{ J mol}^{-1}K^{-1}$
 $S^{\bullet}[NH_{3}(g)] = +192.3 \text{ J mol}^{-1}K^{-1}$
 $S^{\bullet}[H_{2}O(1)] = +69.9 \text{ J mol}^{-1}K^{-1}$

(a)	Why is the standard entropy of ammonia more positive than the standard entropy of	
	barium chloride?	
		(1)

(b) Use the values given to calculate the standard entropy change, $\Delta S_{\text{system}}^{\Theta}$, for this reaction. Include the sign and units in your answer.

(c)	Calculate the standard entropy change of the surroundings, $\Delta S^{\Theta}_{\text{surroundings}}$, at 298 K for this reaction.	
		(2)
(d)	Use your answers to (b) and (c) to show that this reaction is feasible at 298 K.	
		(1)
(e)	Calculate the minimum temperature, in kelvin, at which the reaction is spontaneous.	
	(Total 8 ma	(2) arks)

2.	Thermochemical data, at 298 K, for the equilibrium between zinc carbonate, zinc oxide and
	carbon dioxide is shown below.

$$ZnCO_3(s) \rightleftharpoons ZnO(s) + CO_2(g)$$
 $\Delta H^{\bullet} = +71.0 \text{ kJ mol}^{-1}$
 $S^{\bullet}[ZnO(s)] = +43.6 \text{ J mol}^{-1} \text{ K}^{-1}$
 $S^{\bullet}[ZnCO_3(s)] = +82.4 \text{ J mol}^{-1} \text{ K}^{-1}$
 $S^{\bullet}[CO_2(g)] = +213.6 \text{ J mol}^{-1} \text{ K}^{-1}$

(a)	(i)	Suggest reasons for the differences between the three standard entropies.	
			(2)

(ii) Calculate the entropy change for the system, $\Delta S_{\text{system}}^{e}$, for this reaction. Include the sign and units in your answer.

(b)		ulate the entropy change for the surroundings, $\Delta S_{\text{surroundings}}^{\text{e}}$, at 298 K, showing your nod clearly.	
			(2)
(c)	(i)	Calculate the total entropy change for this reaction, $\Delta S_{\text{total}}^{\text{e}}$, at 298 K.	
			(1)
	(ii)	What does the result of your calculation in (c)(i) indicate about the natural direction of this reaction at 298 K?	
		Justify your answer.	
(d)	(i)	Write an expression for the equilibrium constant, K_p , for this reaction.	(1)
(G)		write an expression for the equinorian constant, rip, for this reaction.	

(1)

		(ii)	State how you would alter ONE condition to increase the yield of carbon dioxide from this equilibrium reaction.	
			Justify your answer.	
			(Total 11 m	(2) arks)

3.	Whe	n dinit	rogen tetroxide, N ₂ O ₄ , dissociates, the following equilibrium is established.	
			$N_2O_4(g) \rightleftharpoons 2NO_2(g)$	
	(a)	State react	a property which could be measured to follow the progress of this reversible ion.	
				(1)
	(b)	Write	e an expression for the equilibrium constant, K_c , for this reaction.	
				(1)

(c) When a sample of 0.0370 moles of gaseous dinitrogen tetroxide is allowed to dissociate at 25 °C in a container of volume 1 dm 3 , 0.0310 moles of $N_2O_4(g)$ remain in the equilibrium mixture.

Complete the table below, and use the data to calculate K_c for the reaction. Include a unit in your answer.

	N_2O_4	NO_2
Number of moles at start	0.0370	0
Number of moles in 1 dm ³ at equilibrium	0.0310	

$K_{\rm c}$ calculation:			

(d)	The r	eaction was repeated at a higher pressure, maintaining the temperature at 25 °C.	
	(i)	How does this increase in pressure affect the amount of nitrogen dioxide, $NO_2(g)$, in the equilibrium mixture?	
			(1)
	(ii)	How does this increase in pressure affect the value of K_c ?	
			(1)

(3)

(e)	The reaction was repeated at the original pressure, but the temperature was increased to 75 °C. The value of K_c was approximately twenty times greater.	
	How does this information show that the reaction is endothermic?	
		(1)
(f)	Predict the sign of ΔS_{system} for the reaction, giving a reason for your answer.	
		(2)
(g)	Write the equation for the relationship between $\Delta S_{\text{surroundings}}$ and ΔH for the reaction.	
		(1)
(h)	The magnitude of $\Delta S_{\rm system}$ for the reaction is greater than the magnitude of $\Delta S_{\rm surroundings}$. Explain why this must be the case.	
		(2)
	(Total 13 n	

a) The entropy of one mole of each substance in the equation, measured at 298 K, is show below. Se		CO(g) + 2F	$H_2(g) \to CH_3OH(l)$	$\Delta H^{\bullet} = -129 \text{ kJ mol}^{-1}$	
	a)		ne mole of each substance in	n the equation, measured at 29	8 K, is show
CO(g) 197.6 H ₂ (g) 130.6 CH ₃ OH(l) 239.7 (i) Suggest why methanol has the highest entropy value of the three substances.			Substance		
(i) Suggest why methanol has the highest entropy value of the three substances.			CO(g)		
(i) Suggest why methanol has the highest entropy value of the three substances.			H ₂ (g)	130.6	
(i) Suggest why methanol has the highest entropy value of the three substances.			CH ₃ OH(l)	239.7	
(ii) Calculate the entropy change of the system, $\Delta S^{\bullet}_{system}$, for this reaction.		(1) Suggest wi		entropy value of the three sub	stances.

(iii) Is the sign of $\Delta S_{system}^{\Theta}$ as expected? Give a reason for your answer.

.....

(1)

	(iv)	Calculate the entropy change of the surroundings $\Delta S^{\Theta}_{surroundings}$, at 298 K.	
	(v)	Show, by calculation, whether it is possible for this reaction to occur spontaneously at 298 K.	(2)
(b)	(b) When methanol is produced in industry, this reaction is carried out at 400 °C and 200 atmospheres pressure, in the presence of a catalyst of chromium oxide mixed with zinc oxide. Under these conditions methanol vapour forms and the reaction reaches equilibrium. Assume that the reaction is still exothermic under these conditions.		
		$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
	(i)	Suggest reasons for the choice of temperature and pressure.	
		Temperature	
		Pressure	
			(3)
			(0)

(ii)	The catalyst used in this reaction is heterogeneous . Explain this term.	
		(1)
(iii)	Write an expression for the equilibrium constant in terms of pressure, K_p , for this reaction.	
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
		(1)
(iv)	In the equilibrium mixture at 200 atmospheres pressure, the partial pressure of carbon monoxide is 55 atmospheres and the partial pressure of hydrogen is 20 atmospheres.	
	Calculate the partial pressure of methanol in the mixture and hence the value of the equilibrium constant, K_p . Include a unit in your answer.	
		(2)

(c) The diagram below shows the distribution of energy in a sample of gas molecules in a reaction when no catalyst is present. The activation energy for the reaction is E_A .

Number of molecules with kinetic energy E

(i) What does the shaded area on the graph represent?

(1)

(ii) Draw a line on the graph, labelled $E_{\rm C}$, to show the activation energy of the catalysed reaction.

(1)

(Total 17 marks)

5. The reaction between nitrogen and hydrogen can be used to produce ammonia.

$$N_2(g) + 3H^2(g) \implies 2NH_3(g)$$
 $\Delta H^{e} = -92.2 \text{ kJ mol}^{-1}$

Standard entropies are given below

$$S^{\bullet}$$
 [N₂(g)] = +191.6 J mol⁻¹ K⁻¹

$$S^{\bullet}$$
 [H₂(g)] = +130.6 J mol⁻¹ K⁻¹

$$S^{\bullet}$$
 [NH₃(g)] = +192.3 J mol⁻¹ K⁻¹

(a)	Calculate the entropy change of the system, $\Delta S_{\text{system}}^{e}$, for this reaction. Include a sign and units in your answer.	
(b)	Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}^{\Theta}$, at 298 K. Include a sign and units in your answer.	(2)
(c)	(i) Calculate the total entropy change, $\Delta S_{\text{total}}^{\text{e}}$, at 298 K. Include a sign and units in	(2)
	your answer.	(1)

(ii)			
	dustry the reaction is carried out at about 700 K using an iron catalyst and high ures.		
(i)	The yield of ammonia produced at equilibrium is less at 700 K than at 298 K, if the pressure remains constant. In terms of entropy, explain why this happens.		
(ii)	Higher pressures increase the yield of ammonia at equilibrium. Suggest a reason why pressures greater than 300 atmospheres are not routinely used.		
::\</td <td>In a last and a second and a second last Equals in subset in magnetic by both and a second a second and a second a second and a second</td>	In a last and a second and a second last Equals in subset in magnetic by both and a second a second and a second a second and a second		
(iii)	Iron is a heterogeneous catalyst. Explain what is meant by heterogeneous .		
	(Total 9		

6. (a) The distribution of the energy of particles in a gas at temperature T1 is shown below.

(i) On the diagram above, draw the distribution of energy of particles at a **lower** temperature, T2.

(ii) Use the diagram to explain why the rate of a reaction increases with an increase in temperature.

(3)

(iii)	Explain fully why a catalyst increases the rate of a reaction.		
		(2)	
		(2)	

(b)	The f	rementation of glucose is an exothermic reaction and is catalysed by enzymes in .			
	$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$				
	The r	eaction is slow at room temperature.			
	(i)	Describe, with the aid of a diagram, an experiment you could do to follow the progress of this reaction at different temperatures.			

(4)

	Would you expect ΔS_{system} to be positive or negative for this reaction? Justify your answer with TWO pieces of evidence.	(ii)
(2)		
) Deduce the sign of $\Delta S_{\text{surroundings}}$. Show your reasoning.	(iii)
(2)		
marks)	(Total 15 n	

7.	In the first stage of an industrial process for purifying nickel, carbon monoxide is passed over
	impure nickel at 323 K. Gaseous nickel tetracarbonyl, Ni(CO) ₄ , is formed.

$$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$$
 $\Delta H^{\Theta} = -191 \text{ kJ mol}^{-1}$

(a) (i) Calculate $\Delta S_{\text{system}}^{\Theta}$ for this reaction given the following standard entropy values.

Substance	<i>S</i> ^e /J mol ⁻¹ K ⁻¹
Ni(s)	+29.9
CO(g)	+197.6
Ni(CO) ₄ (g)	+313.4

Include a sign and units in your answer.

(ii)	Refer to the equation above and comment on the sign of your answer.	
		(1)

(iii) Calculate $\Delta S_{\text{surroundings}}^{e}$ at 323 K. Include a sign and units in your answer.

(2)

(iv)	iv) Deduce the direction of this reaction at 323 K. Justify your answer.		
		(1)	

(b) (i) Write the expression for the equilibrium constant, K_p , for this reaction.

(1)

(ii) 100 moles of gaseous carbon monoxide is mixed with excess solid nickel at 323 K in a vessel kept at 1.00 atmosphere pressure. At equilibrium, 1.00 mole of the carbon monoxide has reacted.

Complete the table below and then calculate the value of K_p at this temperature. Include the units of K_p in your answer.

Substance	Moles at start	Moles at equilibrium	Partial pressure, $p_{\rm eq}$ /atm
Ni(CO) ₄	0		
СО	100	99.0	

	(111)	As K_p has such a small value, suggest THREE ways in which this industrial process could be improved to increase profitability. Justify each of your suggestions.
		suggestions.
		(3)
(c)	Ni(C	second stage of this process is to recover the nickel from the nickel tetracarbonyl, O) ₄ . By considering your calculations of the entropy changes, suggest how this I be done. Justify your suggestion.
		(2) (Total 16 marks)

		the manufacture of nitric acid is the reaction between nitrogen(II) oxide and oxygen rogen(IV) oxide.	
		$2NO(g) + O_2(g) \implies 2NO_2(g) \qquad \Delta H = -114 \text{ kJ mol}^{-1}$	
(a)	(i)	Use the equation to suggest the sign of $\Delta S_{\rm system}$ for the forward reaction. Justify your answer.	
			(2)
	(ii)	What is the sign of $\Delta S_{\text{surroundings}}$ for the forward reaction? Justify your answer.	
			(2)
(b)	(i)	Write the expression for K_p for this reaction.	
		What are the units of K_p in this reaction?	
		Units	(2)

8.

	(11)	oxide more economically. Justify your suggestions by considering both yield and rate.	
		Temperature	
		Pressure	
		Tressure	
			(4)
(c)	(i)	What property would allow you to follow the progress of this reaction? Justify your answer.	
			(2)

(ii) In a series of experiments, the following results were obtained.

Experiment	[NO(g)] /mol dm ⁻³	$[O_2(g)]$ /mol dm ⁻³	Initial rate /mol dm ⁻³ s ⁻¹
1	1.0×10^{-3}	1.0×10^{-3}	8.0×10^{-6}
2	2.0×10^{-3}	1.0×10^{-3}	3.2×10^{-5}
3	2.0×10^{-3}	2.0×10^{-3}	6.4×10^{-5}

	What is the order of the reaction with respect to NO(g)? Justify your answer.	
		(
	• What is the order of the reaction with respect to $O_2(g)$?	
		(
)	What is the rate equation for this reaction?	
		(
)	What is the overall order for this reaction?	
		(

	(v)	Calculate the rate constant, <i>k</i> , for this reaction. Include units with your answer.	
			(2)
(d)	Sugg	gest why this reaction takes place quickly at room temperature and pressure.	
		(Total 20 a	(1) narks
		(2011-20)	1141115
TOL:	,.		
This	questi	on is about the reaction between calcium carbonate and hydrochloric acid.	
This	questi	on is about the reaction between calcium carbonate and hydrochloric acid. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$	
One	metho		
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	
One give	metho n off a	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ d of studying the kinetics of this reaction is to measure the volume of carbon dioxide t various timed intervals when using an excess of calcium carbonate.	

9.

n an experiment, the following results were obtained. Time Volume of CO_2 $(V_{final} - V_t)$ $/ cm^3$ 5 3 85 35 42 46 65 62 26 95 72 125 79 79 79 70				••••••••••
$\begin{array}{c cccc} Time & Volume of CO_2 & (V_{final} - V_t) \\ \hline V_t / cm^3 & / cm^3 \\ \hline 5 & 3 & 85 \\ \hline 35 & 42 & 46 \\ \hline 65 & 62 & 26 \\ \hline 95 & 72 & \\ \hline \end{array}$				
$\begin{array}{c ccccc} Time & Volume of CO_2 & (V_{final} - V_t) \\ \hline /s & V_t/cm^3 & /cm^3 \\ \hline 5 & 3 & 85 \\ \hline 35 & 42 & 46 \\ \hline 65 & 62 & 26 \\ \hline 95 & 72 & \\ \hline \end{array}$				
$\begin{array}{c ccccc} Time & Volume of CO_2 & (V_{final} - V_t) \\ \hline /s & V_t/cm^3 & /cm^3 \\ \hline 5 & 3 & 85 \\ \hline 35 & 42 & 46 \\ \hline 65 & 62 & 26 \\ \hline 95 & 72 & \\ \hline \end{array}$				
$\begin{array}{c ccccc} Time & Volume of CO_2 & (V_{final} - V_t) \\ \hline /s & V_t/cm^3 & /cm^3 \\ \hline 5 & 3 & 85 \\ \hline 35 & 42 & 46 \\ \hline 65 & 62 & 26 \\ \hline 95 & 72 & \\ \hline \end{array}$				
$\begin{array}{c ccccc} Time & Volume of CO_2 & (V_{final} - V_t) \\ \hline /s & V_t/cm^3 & /cm^3 \\ \hline 5 & 3 & 85 \\ \hline 35 & 42 & 46 \\ \hline 65 & 62 & 26 \\ \hline 95 & 72 & \\ \hline \end{array}$	n an experiment the	following results were	obtained	
/ s V _t /cm³ / cm³ 5 3 85 35 42 46 65 62 26 95 72				
35 42 46 65 62 26 95 72				
65 62 26 95 72	5	3	85	
95 72	35	42	46	
	65	62	26	
125 79	95	72		
	125	79		
155 84	155	84		
185 87	185	87		
	ii) Complete the ta	able.		
ii) Complete the table.				

(iv) Plot these results on the grid below.

(v) On your graph measure and record THREE successive half-lives. Deduce the order of the reaction. Justify your answer.

(3)

	(vi)	Give the rate equation for this reaction.	
			(1)
	(vii)	What are the units of the rate constant?	
			(1)
<i>(</i> 1)	33 71		
(d)		t would you expect the signs of ΔS_{system} and ΔS_{total} to be for the reaction between um carbonate and hydrochloric acid? Justify your answers.	
	$\Delta S_{ m sys}$	tem ·····	
	•••••		
	$\Delta S_{ m tota}$	al	
	•••••	(Total 17 ma	(4) orks)
		(Ivai I) ha	

10.	When barium	nitrate is	heated it	decomposes	as follows
-----	-------------	------------	-----------	------------	------------

$$Ba(NO_3)_2(s) \to BaO(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$$
 $\Delta H = +505.0 \text{ kJ mol}^{-1}$

(a) Use the following data when answering this part of the question.

Substance	Standard entropy, $S^{\Theta} / J \text{ mol}^{-1} K^{-1}$
Ba(NO3) ₂ (s)	+ 213.8
BaO(s)	+ 70.4
NO ₂ (g)	+ 240.0
$O_2(g)$	+ 205.0

(i)	Explain	1
(1)	Exhiain	w/nv/
(1)	LApium	vv ii y .

sign and units in your answer.

•	S^{\bullet} [NO ₂ (g)] is greater than S^{\bullet} [BaO(s)]

•	S^{Θ} [Ba(NO ₃) ₂ (s)] is greater than S^{Θ} [BaO(s)].

(ii) Calculate the entropy change of the system, $\Delta S_{\text{system}}^{e}$, for this reaction. Include a

(2)

(b) Calculate the entropy change of the surroundings, $\Delta S^{\bullet}_{surroundings}$, for the reaction at 298 K. Include a sign and units in your answer.

(2)

(2)

(c)	Calculate ΔS°_{total} ,	and explain	the significance	of the sign for	r this value
	total,			\mathcal{C}	

(d) Calculate the minimum temperature at which the decomposition of barium nitrate should occur.

You can assume that ΔH and $\Delta S_{\mathrm{system}}$ are **not** affected by a change in temperature.

(2) (Total 10 marks)

11. Ammonia can be oxidised to form nitrogen(II) oxide and water according to the equation

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g) \qquad \quad \Delta \textit{H}^{\bullet} = -905.6 \text{ kJ mol}^{-1}.$$

In industry, the reaction is carried out at 1123 K with a platinum/rhodium catalyst.

The standard entropy of one mole of each substance in the equation, measured at 298 K, is shown in the table below.

Substance	S^{\bullet} / J mol ⁻¹ K ⁻¹
NH ₃ (g)	+192.3
$O_2(g)$	+205.0
NO (g)	+210.7
H ₂ O (g)	+188.7

(a)	(i)	Use the values given to calculate the standard entropy change of the system, $\Delta S_{\text{system}}^{\Theta}$, for this reaction. Include the sign and units in your final answer.	
			(2)
			(2)
	(ii)	Is the sign for your value for $\Delta S_{\text{system}}^{\Theta}$ what you expected? Justify your answer.	
			(1)
	(iii)	Calculate the entropy change of the surroundings, $\Delta S_{\text{surroundings}}$, at 1123 K for this reaction. Include the sign and units in your final answer.	
			(2)
	(iv)	Calculate the total entropy change, ΔS_{total} , for this reaction at 1123 K. Include the sign and units in your final answer. You may assume that ΔS_{system} is unchanged at high temperatures.	
			(1)

(v) What does your answer to (iv) tell you about the extent of the reaction at 1123 K? Justify your answer.

(1)

(vi) An energy profile was proposed to illustrate the effect of the catalyst on this reaction. The proposal has two errors. Draw a corrected version on the axes below.

Proposal

Corrected version

(b) The oxidation of nitrogen(II) oxide leads to the following equil-	norium
---	--------

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

The number of moles of each gas in a reaction mixture at equilibrium, at a pressure of 1.5atm, was found to be

Substance	Number of moles at equilibrium
NO (g)	0.025
$O_2(g)$	0.025
NO ₂ (g)	4.95

(i)	Write the expression	for the equilibrium	constant, $K_{\rm p}$, for	this reaction.

(ii) Calculate the mole fraction of each gas and hence the value of the equilibrium constant, K_p , for this mixture. Include units, if required, in your answer.

(4)

(iii) What does your answer to (ii) tell you about the position of the equilibrium?

Justify your answer.

(1)

(1)

(iv)	If the total pressure of the reaction mixture was increased, describe what would happen to the value of the equilibrium constant, K_p , and the partial pressure of
	$NO_2(g)$. In each case justify your answer.
	Equilibrium constant, K_p .
	Partial pressure of $NO_2(g)$.
	(2) (Total 17 marks)

12. This question is about the reaction between barium hydroxide and ammonium chloride:

$$Ba(OH)_2(s) + 2NH_4Cl(s) \rightarrow BaCl_2.2H_2O(s) + 2NH_3(g)$$
 $\Delta H = +21.2 \text{ kJ mol}^{-1}$

(a) Standard entropies of the reactants and products are shown below:

Substance	Standard entropy, S ^o / J mol ⁻¹ K ⁻¹
Ba(OH) ₂ (s)	+ 99.7
NH ₄ Cl(s)	+ 94.6
BaCl ₂ .2H ₂ O(s)	+202.9
NH ₃ (g)	+192.3

Calculate the standard entropy change for the system, $\Delta S^{\Theta}_{system}$, for this reaction. Include a sign and units in your answer.

(2)

(b) Calculate the entropy change for the surroundings, $\Delta S^{\bullet}_{\text{surroundings}}$, at 298 K. Give your answer to 3 significant figures and include a sign and units in your answer.

(c)	(i)	Use your answers to (a) and (b) to explain why this reaction is spontaneous at 298 K.	
			(1)
	(ii)	When these two solids are mixed together in a beaker, no reaction is observed. What explanation can be given for this, in view of the fact that the process is spontaneous?	
			(1)
	(iii)	Apart from heating the mixture, suggest what might be done to encourage the reaction to take place. Explain why your suggestion is likely to work.	
		(Total 8 m	(2) arks)

13. The equation below shows the equilibrium existing between nitrogen, oxygen and nitrogen monoxide.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

The equilibrium constant, K_p , at 298 K is 5.0×10^{-31}

(a)	(i)	Write an expression for the equilibrium constant, K_p , in terms of the partial pressures of the three gases.	
			(1)
	(ii)	Why does the value for K_p have no units?	
			(1)
(b)		quilibrium mixture of these three gases was found to contain nitrogen, at a partial ure of 0.87 atm, and oxygen, at a partial pressure of 0.23 atm.	
	(i)	Calculate the partial pressure exerted by the nitrogen monoxide.	
			(2)
	(ii)	Deduce the value of the total pressure of the equilibrium mixture of gases.	
			(1)

	 partial pressure of r 	nitrogen monoxida	2	
	partial pressure of r	monome.	•	
	·			
	• aquilibuium aquatar	V 9		
	equilibrium constar	ιι, Λ _p !		
	•			
	·			
10016				and under the hie
	le a car engine, air (a mix			and, under the mg
emp	peratures operating, the v	value of $K_{\rm p}$ increas	es dramatically.	
temp This	peratures operating, the v	Talue of K_p increase anied by an increase	es dramatically.	
emp This	peratures operating, the v	Talue of K_p increase anied by an increase	es dramatically.	
emp This	peratures operating, the v	Talue of K_p increase anied by an increase	es dramatically.	
emp This	peratures operating, the value increase is also accompand ΔS_{total} are shown in the	Talue of K_p increase anied by an increase table below.	es dramatically. se in the value of $\Delta S_{ m total}$	
temp This	beratures operating, the value increase is also accompand ΔS_{total} are shown in the Temperature / K	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31}	es dramatically. se in the value of $\Delta S_{\rm total}$ $\Delta S_{\rm total} / {\rm J \ mol}^{-1} {\rm K}^{-1}$	
temp Гhis К _р а	beratures operating, the value increase is also accompand ΔS_{total} are shown in the Temperature / K 298 1500	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5}	es dramatically. se in the value of ΔS_{total} ΔS_{total} / J mol ⁻¹ K ⁻¹ -580 -96	. Typical values of
This K_p a	beratures operating, the value of $\Delta S_{\rm syste}$ increase is also accompand $\Delta S_{\rm total}$ are shown in the second of the second of the value of $\Delta S_{\rm syste}$ ough the value of $\Delta S_{\rm syste}$	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5}	es dramatically. se in the value of ΔS_{total} ΔS_{total} / J mol ⁻¹ K ⁻¹ -580 -96	. Typical values of
This K_p a	beratures operating, the value increase is also accompand ΔS_{total} are shown in the Temperature / K 298 1500	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5}	es dramatically. se in the value of ΔS_{total} ΔS_{total} / J mol ⁻¹ K ⁻¹ -580 -96	. Typical values of
em $_{\Gamma}$ Fhis $K_{ m p}$ a	beratures operating, the value of $\Delta S_{\rm syste}$ increase is also accompand $\Delta S_{\rm total}$ are shown in the second of the second of the value of $\Delta S_{\rm syste}$ ough the value of $\Delta S_{\rm syste}$	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5}	es dramatically. se in the value of ΔS_{total} ΔS_{total} / J mol ⁻¹ K ⁻¹ -580 -96	. Typical values of
This K_p a	beratures operating, the value of $\Delta S_{\rm syste}$ increase is also accompand $\Delta S_{\rm total}$ are shown in the second of the second of the value of $\Delta S_{\rm syste}$ ough the value of $\Delta S_{\rm syste}$	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5} m is unlikely to al	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{K}^{-1}$ -580 -96 ter very much, the value	. Typical values of
Emproperation $K_{ m p}$ a $Alth$	beratures operating, the value of ΔS_{total} are shown in the s	ralue of $K_{\rm p}$ increase anied by an increase table below. $K_{\rm p}$ 5.0×10^{-31} 1.0×10^{-5} 1.0×10^{-5} m is unlikely to all $00 \text{ K}, \Delta S_{\rm total} \text{ is ne}$	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{ K}^{-1}$ -580 -96 ter very much, the value gative.	. Typical values of $\Delta S_{ m surroundings}$
emp Γ his $K_{ m p}$ a	beratures operating, the value of ΔS_{total} are shown in the s	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5} In is unlikely to all the ereaction between	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{K}^{-1}$ -580 -96 ter very much, the value	. Typical values of $\Delta S_{ m surroundings}$
em $_{\Gamma}$ Fhis $K_{ m p}$ a	increase is also accompand ΔS_{total} are shown in the shown in	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5} In a unlikely to all the ereaction between every our reasoning.	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{ K}^{-1}$ -580 -96 ter very much, the value gative.	. Typical values of $\Delta S_{ m surroundings}$ annot occur at this
emp Γ his $K_{ m p}$ a	increase is also accompand ΔS_{total} are shown in the shown in	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5} In a unlikely to all the ereaction between every our reasoning.	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{K}^{-1}$ -580 -96 ter very much, the value gative.	. Typical values of $\Delta S_{ m surroundings}$ annot occur at this
em $_{\Gamma}$ Fhis $K_{ m p}$ a	increase is also accompand ΔS_{total} are shown in the shown in	ralue of K_p increase anied by an increase table below. K_p 5.0×10^{-31} 1.0×10^{-5} In a unlikely to all the ereaction between every our reasoning.	es dramatically. se in the value of ΔS_{total} $\Delta S_{\text{total}} / \text{J mol}^{-1} \text{K}^{-1}$ -580 -96 ter very much, the value gative.	. Typical values of $\Delta S_{ m surroundings}$ annot occur at this

(ii)	Why is the value for ΔS_{system} for this equilibrium approximately constant when the temperature rises above 298 K?	
		(1)
(iii)	What is the sign of $\Delta S_{\text{surroundings}}$ for an endothermic reaction? Justify your answer.	
		(1)
(iv)	Explain why an endothermic reaction results in an increase in the value of ΔS_{total} as the temperature increases.	
		(1)
	dent used the value for K_p at 1500 K to calculate the partial pressure of nitrogen xide inside a working car engine.	
Why	might the actual partial pressure be lower than the calculated answer?	
	(Total 12 ma	(1) rks)

(d)

14.	Phosphorus(V)) chloride	dissociates	as follows
-----	---------------	------------	-------------	------------

$$PCl_5(s) \rightleftharpoons PCl_3(l) + Cl_2(g)$$
 $\Delta H^{\bullet} = + 123.8 \text{ kJ mol}^{-1}$

Substance	Standard entropy, S^{\bullet} / J mol ⁻¹ K ⁻¹	
PCl ₅ (s)	+ 166.5	
PCl ₃ (l)	+ 217.1	
Cl ₂ (g)	+ 165.0	

(a)	(i)	Explain why the entropy of solid phosphorus(V) chloride, PCl ₅ , is smaller than the entropy of liquid phosphorus(III) chloride, PCl ₃ ?	
			(1)
	(ii)	Calculate ΔS^{e}_{system} for the forward reaction. Include a sign in your answer.	
			(1)
	(iii)	Is the sign of $\Delta S_{\text{system}}^{\Theta}$ as you would expect? Fully justify your answer.	
			(2)

(b)	Calc answ	ulate $\Delta S^{\Theta}_{\text{surroundings}}$ for the forward reaction at 298 K. Include a sign and units in your ver.	
			(2)
(c)	(i)	Use your answers to calculate $\Delta S_{\text{total}}^{\Theta}$ for the forward reaction at 298 K. Include a sign in your answer.	
			(1)
	(ii)	Comment on the position of equilibrium at 298 K.	
			(1)

(d)	In an experiment to investigate this equilibrium, 41.7 g of phosphorus(V) chloride (molar
	mass 208.5 g mol ⁻¹) was heated in a closed vessel at 150 °C until equilibrium was
	established. The final pressure was found to be 4.32 atm and 0.15 moles of
	phosphorus(V) chloride remained. At this temperature all of the reactants and products
	are gaseous.

(i) Give the expression for the equilibrium constant, K_p , and its units at this temperature.

(2)

(ii) Complete the table

Substance	Moles at start	Moles at equilibrium	Partial pressure at equilibrium, p_{eq} /atm
PCl ₅ (g)		0.15	
PCl ₃ (g)	0		
Cl ₂ (g)	0		
Total number of m	oles at equilibrium		

(3)

(iii) Calculate K_p .

(1)

(iv)	How would you expect the value of K_p to change, if at all, if the following changes
	were made? Justify each of your answers.

A Only 20.85 g of phosphorus(V) chloride had been used.

B The temperature had been increased to 250 °C.

(Total 16 marks)

(2)

15. This question refers to the following reaction at 298 K:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$

$$\Delta H = +57.2 \text{ kJ mol}^{-1}$$

	S /J mol ⁻¹ K ⁻¹	
$N_2O_4(g)$	304.2	
NO ₂ (g)	240.0	

(a) Calculate ΔS_{system} , in J mol⁻¹ K⁻¹, for this reaction.

A -175.8

B +175.8

C -64.2

D +64.2

(1)

- (b) Calculate $\Delta S_{\text{surroundings}}$, in J mol⁻¹ K⁻¹, for this reaction at 298 K.
 - **A** −192
 - **B** +192
 - **C** -0.192
 - **D** +0.192

(1) (Total 2 marks)

16. This question is about the reaction of magnesium with hydrochloric acid which takes place rapidly at room temperature.

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$
 $\Delta H = -467 \text{ kJ mol}^{-1}$

(a) Rewrite the equation omitting spectator ions.

(1)

(b)	Sugge	est the sign of the following entropy changes for this reaction. Justify each of your ers.	
	(i)	$\Delta S_{ m system}$	
			(2)
	(ii)	$\Delta S_{ m surroundings}$	
			(2)
	(iii)	$\Delta S_{ m total}$	
			(1)

(c) A student carried out this experiment at five different temperatures in order to calculate the activation energy of the reaction. The student's laboratory record is shown below.

Method

Clean a strip of magnesium weighing 0.100 g with sand paper. Measure the temperature of 20 cm³ of 1.00 mol dm⁻³ hydrochloric acid in a 100 cm³ beaker. Add the magnesium ribbon, stir continuously, and time how long it takes for the magnesium to disappear. Repeat the experiment at four other temperatures.

Assumption: the initial rate of reaction is proportional to 1/time.

Results

Temperature /°C	Temperature /K	1/T /K ⁻¹	time /s	1/time /s ⁻¹	In 1/time
24	297	3.37×10^{-3}	45	0.0222	-3.81
33	306	3.27×10^{-3}	25	0.0400	-3.22
45	318	3.14 × 10 ⁻³	11	0.0909	-2.40
56	329	3.04 × 10 ⁻³	6	0.1667	-1.79
10	283	3.53 × 10 ⁻³	122	0.0082	-4.80

The Arrhenius equation is $\ln k = -E_a/R \times (1/T) + constant$

 $ln\ 1/time$ is proportional to $ln\ k$ and so a graph of $ln\ 1/time$ will have the same gradient as that of the Arrhenius plot of $ln\ k$ against 1/Temperature

The student plotted the graph of $\ln 1$ /time against 1/Temperature and from this the activation energy, E_A , was calculated as $+ 51.3 \text{ kJ mol}^{-1}$.

		(1)
1)	Suggest the reason for cleaning the magnesium ribbon with sand paper.	

(ii)	Calculate the number of moles of hydrochloric acid used up when all the magnesium reacts in one experiment. Hence comment on whether the change in concentration during the reaction will have a significant effect on the validity of the assumption that the initial rate of reaction is proportional to 1/time. How would you overcome this potential error?	ie
	[Take the relative atomic mass of magnesium as 24 in this and subsequent calculations.]	
		(5)

(iii)	Use the value of ΔH and other information given in the question to calculate the temperature change in an experiment assuming no energy is lost to the surroundings. Hence comment on whether this change in temperature will have a significant effect. How would you overcome this potential error?	
	$[\Delta H = -467 \text{ kJ mol}^{-1}.$	
	heat produced = mass \times specific heat capacity \times change in temperature.	
	Assume that the specific heat capacity of the solution is $4.18 \text{ J K}^{-1} \text{ g}^{-1}$]	
		(4)

(iv) The most difficult thing to measure accurately is the time it takes for the magnesium to disappear and the time measured can be up to 2 seconds out. Assuming this error, calculate the shortest time at 56 °C and the longest time at 10 °C for this reaction.

Complete the table for these times. Plot the two points on the grid below and join them with a straight line. From the gradient, which equals $-E_A/R$, of this line calculate another value for the activation energy.

Temperature / °C	Temperature /K	1/T /K ⁻¹	time /s	1/time /s ⁻¹	ln 1/time
56	329	3.04×10^{-3}			
10	283	3.53×10^{-3}			

(v)	If the reaction mixture is not stirred, the magnesium tends to float on the surface of the acid.	
	Suggest how this would affect the measurements of the rate of the reaction.	
		(1)
(vi)	Suggest two other improvements the student could do to this experiment to improve the accuracy or validity of the results.	
		(2)
(vii)	If ethanoic acid of the same concentration and at the same temperature is used instead of hydrochloric acid, explain how the rate would differ.	
	(Total 24 m	(1) arks)