F322: Chains, Energy and Resources <u>Halogenoalkanes</u>

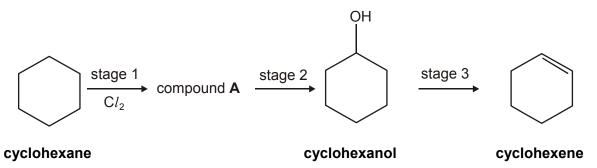
56 Marks

1. Chlorofluoroalkanes, CFCs, were developed from fluoroalkanes and were used in aerosols and as refrigerants. Under the Montreal Protocol, CFCs are now largely banned because of their ozone-depleting properties. CFCs have now been replaced in many applications.

Suggest **two** reasons why there is still concern about ozone depletion.

ר	Fotal 2 marks]

2. A student reacted 8.72 g of bromobutane with an excess of OH⁻. The student produced 4.28 g of butan-1-ol.


In this reaction the hydroxide ion acts as a nucleophile.

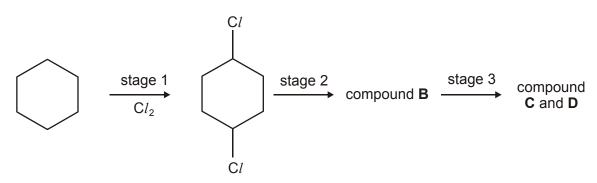
(i) What name is given to this type of reaction?

[1]

(ii) Explain the term *nucleophile*.
 [1]
 (iii) Outline the mechanism for this reaction.
 Show curly arrows and relevant dipoles.

3. (a) Cyclohexane can be converted into cyclohexene via a three-stage synthesis.

(i) In stage 1, cyclohexane reacts with chlorine to form the organic product, compound **A**.

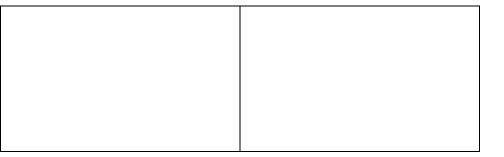

Show the structure of compound **A**.

(ii)	Stage 3 involves the dehydration of an alcohol.	
	State a suitable reagent for dehydrating an alcohol.	
		[1]
		• •

(iii) Write a balanced equation for the dehydration of cyclohexanol, $C_6H_{11}OH$.

[1]

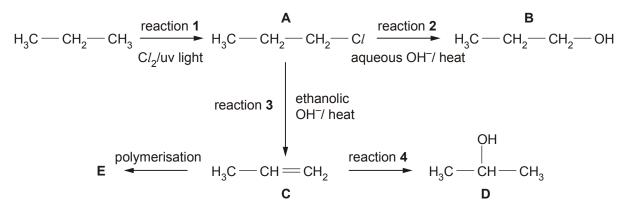
(b) The reaction in stage 1 is difficult to control. One other possible chlorinated product is 1,4-dichlorocyclohexane. This is shown below.



cyclohexane 1,4-dichlorocyclohexane

1,4-Dichlorocyclohexane reacts in the same way as compound **A** in stages 2 and 3.

(i) Suggest the structure of compound **B**.


(ii) Two cyclic alkenes, **C** and **D** are formed in stage 3. **C** and **D** are structural isomers. Suggest the structures of **C** and **D**.

[2] [Total 6 marks]

4.	com	iorochloromethane, CF ₃ C <i>l</i> , is an example of a chlorofluorocarbon, CFC, that was monly used as a propellant in aerosols. Nowadays, CFCs have limited use use of the damage caused to the ozone layer.	
	(i)	Draw a diagram to show the shape of a molecule of CF_3Cl .	[1]
	(ii)	Predict an approximate value for the bond angles in a molecule of CF_3Cl .	[']
		bond angle	[1]
	(iii)	Suggest a property that made CF_3Cl suitable as a propellant in an aerosol.	
			[1]
	(iv)	When CFCs are exposed to strong ultraviolet radiation in the upper atmosphere, homolytic fission takes place to produce free radicals.	
		Explain what is meant by the term <i>homolytic fission</i> .	
			[2]
	(v)	Suggest which bond is most likely to be broken when CF_3Cl is exposed to ultraviolet radiation. Explain your answer.	
		bond	
		Teason	[1]
	(vi)	Identify the two free radicals most likely to be formed when CF_3Cl is exposed to ultraviolet radiation.	
		and	
			[2]
		[Total 8	marks]

5. Propane, C_3H_8 , is used in the reaction sequence shown below.

(a) The reaction sequence shows several important reaction mechanisms. Select from reactions **1** to **4**, the reaction that shows

(i)	free radical substitution,	reaction	
			[1]
(ii)	electrophilic addition,	reaction	
			[1]
(iii)	elimination,	reaction	
			[1]

(b) In reaction 2, the aqueous OH⁻ acts as a nucleophile.
(i) State what is meant by the term *nucleophile*.

(ii) Complete, with the aid of curly arrows, the mechanism involved in reaction **2**. Show any relevant dipoles.

 $H_3C - CH_2 - CH_2 - Cl \longrightarrow H_3C - CH_2 - CH_2 - OH + \dots$

OH⁻

[4]

[1]

- (c) Compounds **B** and **D** are structural isomers of each other.
 - (i) State what is meant by the term *structural isomers*.

(ii) Draw the skeletal formulae of compounds **B** and **D**.

Compound B	Compound D

(d)	Compound C can be polymerised to form compound E .		
	(i)	State the type of polymerisation.	
			[1]
	(ii)	Name compound E.	
			[1]
	(iii)	Draw a section of compound E . Show two repeat units.	
			[1]
		[Total 1	5 marks]

[2]

[2]

6. In this question, one mark is available for the quality of spelling, punctuation and grammar.

The rates of hydrolysis of chloroethane, bromoethane and iodoethane are different.

- Describe how you would monitor the reaction rates.
- Explain why chloroethane, bromoethane and iodoethane react at different rates.

Use suitable equations in your answer.

[Total 6 marks]

7. In 1930, an American engineer, Thomas Midgley, demonstrated a new refrigerant. As part of his demonstration, he inhaled a lung full of dichlorodifluoromethane, CCl_2F_2 , and used it to blow out a candle.

Use Midgley's demonstration to suggest **two** properties of CCl_2F_2 . Explain, with a reason, **two** other uses of chemicals such as CCl_2F_2 , other than as a refrigerant.

- **8.** Halogenoalkanes, such as 1-chlorobutane, are hydrolysed with hot aqueous alkali, OH⁻(aq), to form alcohols.
 - (a) Describe, with the aid of curly arrows, the mechanism of the hydrolysis of 1-chlorobutane with OH⁻(aq) ions to produce butan-1-ol. Show any relevant lone pairs of electrons and dipoles.

$$CH_{3}CH_{2}CH_{2} \xrightarrow{H} C \xrightarrow{H} C I \xrightarrow{H} CH_{3}CH_{2}CH_{2} \xrightarrow{H} C \xrightarrow{H} OH + \dots$$

$$H \xrightarrow{H} H \xrightarrow{$$

- (b) Another halogenoalkane, H, has a relative molecular mass of 127 and has the following composition by mass: C, 37.8%; H, 6.3%; Cl, 55.9%.
 - (i) Show that the empirical formula of compound **H** is C_2H_2Cl .

(ii) Deduce the molecular formula of compound **H**.

[1]

[2]

(iii) Compound **H** can also be hydrolysed with hot aqueous alkali to form butane-1,3-diol. Draw the structure of butane-1,3-diol

[1]

(iv)

Deduce the structure of compound **H**.

[1] [Total 9 marks]