ALCOHOLS

Aliphatic
- **general formula** $C_nH_{2n+1}OH$ - *provided there are no rings*
- named as substituted alkanes by removing the final -e and adding -ol
- for isomers the position of the OH is given a number - *propan-1-ol / propan-2-ol*

Aromatic
- the OH must be **attached directly to a benzene ring**; known as **phenols**
- an OH on a side chain of a benzene ring behaves as a typical aliphatic alcohol.

Q.1 Which of the structures is/are classified as phenols?

Structures
- alcohols are classified according to the environment of the OH functional group
- chemical behaviour, especially with oxidation, often depends on the structure

Physical properties

Boiling point
Increases with molecular size due to **higher induced dipole-dipole interactions**.
Alcohols have **higher boiling points** than similar molecular mass alkanes due to the added presence of **inter-molecular hydrogen bonding**. More energy is required to separate the molecules.

<table>
<thead>
<tr>
<th>Alcohol</th>
<th>Formula</th>
<th>M_r</th>
<th>$bp / ^\circ\text{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>C_2H_5OH</td>
<td>46</td>
<td>+78</td>
</tr>
<tr>
<td>propane</td>
<td>C_3H_8</td>
<td>44</td>
<td>-42</td>
</tr>
<tr>
<td>butan-1-ol</td>
<td>$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}$</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>butan-2-ol</td>
<td>$\text{CH}_3\text{CH}_2\text{CH}(\text{OH})\text{CH}_3$</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2-methylpropan-2-ol</td>
<td>$(\text{CH}_3)_2\text{COH}$</td>
<td>83</td>
<td></td>
</tr>
</tbody>
</table>

Boiling point also increases for “straight” chain isomers.
Greater branching = lower inter-molecular forces.

Solubility
Low molecular mass alcohols are **miscible with water** due to **hydrogen bonding** between the two molecules.

Alcohols are themselves very good solvents, being able to dissolve a large number of organic molecules.
PREPARATION OF ALCOHOLS

Laboratory
- from haloalkanes - reflux with aqueous sodium or potassium hydroxide.
- from aldehydes - reduction with sodium tetrahydridoborate(III) - NaBH₄.
- from alkenes - acid catalysed hydration using conc. sulphuric acid.

Industrial
Fermentation
Reagent(s) GLUCOSE - from hydrolysis of starch
Conditions yeast
warm but no higher than 37°C
Equation \[C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2 \]

Direct hydration
Reagent(s) ETHENE - from cracking of fractions from distilled crude oil
Conditions • catalyst - phosphoric acid
• high temperature and pressure
Equation \[C_2H_4 + H_2O \rightleftharpoons C_2H_5OH \]

Q.2 List some advantages and disadvantages of the two major industrial methods.

Fermentation advantage(s)

disadvantage(s)

Hydration advantage(s)

disadvantage(s)

Uses ethanol
•

methanol • fuel, added to petrol to improve combustion properties
• solvent
• a feedstock for important industrial processes
CHEMICAL PROPERTIES

General Lone pairs on the oxygen atom makes alcohols **Lewis Bases** (lone pair donors).

They can use a lone pair to:
- pick up protons
- behave as nucleophiles.

Elimination

Reagent conc. sulphuric acid (H$_2$SO$_4$) or conc. phosphoric acid (H$_3$PO$_4$)

Conditions reflux 180°C

Product alkene

Equation e.g. C$_2$H$_5$OH(l) \rightarrow CH$_2$ = CH$_2$(g) + H$_2$O(l)

Mechanism

1. Protonation of the alcohol using a lone pair on oxygen
2. Loss of a water molecule to generate a carbocation
3. Loss of a proton (H$^+$) to give the alkene

Note 1 There must be a hydrogen atom on a carbon atom adjacent the carbon with the OH on it

Note 2 Alcohols with the OH in the middle of a chain have two ways of losing water. In Step 3 of the mechanism, a proton can be lost from either side of the carbocation. This can give a mixture of alkenes from unsymmetrical alcohols

Elimination Method 2

Conditions Pass vapour over a heated catalyst of pumice or aluminium oxide

Q.3 Butan-2-ol reacts with concentrated sulphuric acid to give **THREE** isomeric alkenes. What are they and how are they formed?
Oxidation of Alcohols

Provides a way of differentiating between primary, secondary and tertiary alcohols. Reagents include acidified potassium dichromate(VI) or potassium manganate(VII)

Primary

Easily oxidised to aldehydes and then to carboxylic acids.

e.g. \[\text{CH}_3\text{CH}_2\text{OH}(l) + [O] \rightarrow \text{CH}_3\text{CHO}(l) + \text{H}_2\text{O}(l) \]

then \[\text{CH}_3\text{CHO}(l) + [O] \rightarrow \text{CH}_3\text{COOH}(l) \]

• it is essential to distil off the aldehyde before it gets oxidised to the acid
• the alcohol is dripped into a warm solution of acidified K_2Cr_2O_7
• the aldehyde has a low boiling point - no hydrogen bonding - it distils off
• if it didn’t distil off it would be oxidised to the equivalent carboxylic acid
• to oxidise an alcohol straight to the acid you would reflux the mixture

<table>
<thead>
<tr>
<th>compound</th>
<th>formula</th>
<th>intermolecular bonding</th>
<th>boiling point</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHANOL</td>
<td>C_2H_5OH</td>
<td>HYDROGEN BONDING</td>
<td>78°C</td>
</tr>
<tr>
<td>ETHANAL</td>
<td>CH_3CHO</td>
<td>PERMANENT DIPOLE-DIPOLE</td>
<td>23°C</td>
</tr>
<tr>
<td>ETHANOIC ACID</td>
<td>CH_3COOH</td>
<td>HYDROGEN BONDING</td>
<td>118°C</td>
</tr>
</tbody>
</table>

Secondary

Easily oxidised to ketones

e.g. \[\text{CH}_3\text{CHOHCH}_3(l) + [O] \rightarrow \text{CH}_3\text{COCH}_3(l) + \text{H}_2\text{O}(l) \]

N.B. On prolonged treatment with a powerful oxidising agent they can be further oxidised to a mixture of acids with fewer carbon atoms than the original alcohol.

Tertiary

Not oxidised under these conditions. They do break down with vigorous oxidation
Alcohols make useful fuels
e.g. \(\text{C}_2\text{H}_5\text{OH}(l) + 3\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + 3\text{H}_2\text{O}(l) \)

- have high enthalpies of combustion
- do not contain sulphur so there is less pollution
- can be obtained from renewable resources

Bromination

Reagent(s) either conc. hydrobromic acid HBr\(_{(aq)}\)
or sodium (or potassium) bromide and conc. sulphuric acid

Conditions reflux

Product haloalkane

Equation e.g. \(\text{C}_2\text{H}_5\text{OH}(l) + \text{conc. HBr(aq)} \rightarrow \text{C}_2\text{H}_5\text{Br}(l) + \text{H}_2\text{O}(l) \)

Mechanism The mechanism starts off in a similar way to the dehydration (protonation of the alcohol and loss of water) but the carbocation (carbonium ion) is attacked by a nucleophilic bromide ion in step 3.

Esterification

Reagent(s) carboxylic acid + strong acid catalyst (e.g conc. H\(_2\text{SO}_4\))

Conditions reflux

Product ester

Equation e.g. \(\text{CH}_3\text{CH}_2\text{OH}(l) + \text{CH}_3\text{COOH}(l) \rightleftharpoons \text{CH}_3\text{COOC}_2\text{H}_5(l) + \text{H}_2\text{O}(l) \)

ethanol ethanoic acid ethyl ethanoate

An advantage of concentrated H\(_2\text{SO}_4\) is that it is also a dehydrating agent and removes water as it is formed causing the equilibrium to move to the right and thus increasing the yield of ester.

Q.4

Name these esters: \(\text{HCOOC}_2\text{H}_5 \)
\(\text{CH}_3\text{CH}_2\text{COOCH}_3 \)

Complete the equations:
\(\rightleftharpoons \)
\(\text{HCOOC}_2\text{H}_5 + \text{H}_2\text{O} \)
\(\text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + \text{CH}_3\text{CH}_2\text{COOH} \rightleftharpoons + \)
IDENTIFYING ALCOHOLS USING INFRA RED SPECTROSCOPY

<table>
<thead>
<tr>
<th>BOND</th>
<th>COMPOUND</th>
<th>ABSORBANCE</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H</td>
<td>alcohols</td>
<td>broad</td>
<td>3200 cm(^{-1}) to 3600 cm(^{-1})</td>
</tr>
<tr>
<td>O-H</td>
<td>carboxylic acids</td>
<td>medium to broad</td>
<td>2500 cm(^{-1}) to 3500 cm(^{-1})</td>
</tr>
<tr>
<td>C=O</td>
<td>ketones, aldehydes, esters and acids</td>
<td>strong and sharp</td>
<td>1600 cm(^{-1}) to 1750 cm(^{-1})</td>
</tr>
</tbody>
</table>

Differentiation

<table>
<thead>
<tr>
<th>Compound</th>
<th>O-H</th>
<th>C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCOHOL</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>ALDEHYDE / KETONE</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>CARBOXYLIC ACID</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>ESTER</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

ALCOHOL

O-H absorption

ALDEHYDE

C=O absorption

CARBOXYLIC ACID

O-H absorption

C=O absorption
INDUSTRIAL PREPARATION OF ETHANOL - SUMMARY

FERMENTATION

Reagent(s) GLUCOSE - from hydrolysis of starch

Conditions yeast
warm but no higher than 37°C

Equation \[C_{6}H_{12}O_{6} \rightarrow 2 \text{C}_2\text{H}_5\text{OH} + 2 \text{CO}_2 \]

• LOW ENERGY PROCESS
• USES RENEWABLE RESOURCES - PLANTS
• SIMPLE EQUIPMENT

• SLOW
• PRODUCES IMPURE ETHANOL
• BATCH PROCESS

HYDRATION OF ETHENE

Reagent(s) ETHENE - from cracking of fractions from distilled crude oil

Conditions catalyst - phosphoric acid
high temperature and pressure

Equation \[\text{C}_2\text{H}_4 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH} \]

• FAST
• PURE ETHANOL PRODUCED
• CONTINUOUS PROCESS

• HIGH ENERGY PROCESS
• EXPENSIVE PLANT REQUIRED
• USES NON-RENEWABLE FOSSIL FUELS TO MAKE ETHENE

USES • ALCOHOLIC DRINKS
• SOLVENT - industrial alcohol / methylated spirits (methanol is added)
• FUEL - used as a petrol substitute in countries with limited oil reserves
BIOFUELS

What are they?
Liquid fuels made from plant material and recycled elements of the food chain
- biodiesel diesel alternative
- bioethanol petrol additive / substitute

Biodiesel

What is it?
Biodiesel is an alternative fuel which can be made from waste vegetable oil or from oil produced from seeds. It can be used in any diesel engine, either neat or mixed with petroleum diesel.

It is a green fuel, does not contribute to the carbon dioxide (CO₂) burden and produces drastically reduced engine emissions. It is non-toxic and biodegradable.

Advantages
- renewable - derived from sugar beet, rape seed
- dramatically reduces emissions
- carbon neutral
- biodegradable
- non-toxic
- fuel & exhaust emissions are less unpleasant
- can be used directly in unmodified diesel engine
- high flashpoint - safer to store & transport
- simple to make
- used neat or blended in any ratio with petroleum diesel

Disadvantages
- poor availability - very few outlets & manufacturers
- more expensive to produce
- poorly made biodiesel can cause engine problems

Future problems
- there isn’t enough food waste to produce large amounts of biodiesel
- crops grown for biodiesel use land for food crops
- a suitable climate is needed to grow most crops
- some countries have limited water resources

Q.5 Is it sensible, in a world that is short of food, that land should be turned over to the production of biofuels? What are your ideas?