(3) ### **Questions** | _ | - | | |---------------------|---|--| | $\boldsymbol{\sim}$ | 4 | | | | 7 | | | w | | | | Gregoi | r Mendel | used pea | plants in | plant | breeding | experiments | . He dis | covered | the | basis of | |---------|------------|----------|-----------|-------|----------|-------------|----------|---------|-----|----------| | genetic | c inherita | nce. | | | | | | | | | Pea plants produce different coloured peas. The allele for yellow-coloured peas (A) is dominant to the allele for green-coloured peas (a). Two heterozygous parent plants were used in a genetic cross. (i) Predict, using the Punnett square, the percentage probability that this cross will have offspring that produce green-coloured peas. | (ii) Explain <b>one</b> advantage to pea plants of using sexual reproduction to produce offspring. | | |----------------------------------------------------------------------------------------------------|-----| | | (2) | | | | | | | | | | | | | percentage probability of green-coloured peas =.....% | റാ | | | | |----|---|---|---| | | • | • | ^ | | | | | | Gregor Mendel investigated the genetics of peas. He did not know about genes but showed that inherited characteristics can be dominant or recessive. | Explain how Mendel used homozygous tall and homozygous short pea plants to show tha<br>the tall allele is dominant to the short allele. | it | |-----------------------------------------------------------------------------------------------------------------------------------------|-----| | | (2) | | | | | | | | | | Q3. | Mendel's research on pea plants showed that genetic traits are inherited. | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---| | (i) Which term is used to describe the expression of traits in an organism? | | | A genotype B phenotype C allele D gamete | ) | | (ii) Mendel crossed pea plants that produced round seeds with pea plants that produced wrinkled seeds. | | | All the offspring produced round seeds. He then crossed these offspring with each other. Some pea plants in the next generation produced round seeds and the others produced wrinkled seeds. Explain how this showed that some inherited traits are not expressed in an organism. | ) | | | , | | | | | | | | | | | | | | | | | | | | | | | (Total for question = 4 marks | ) | | _ | | |---------------------|-----| | $\boldsymbol{\sim}$ | . 4 | | | 71 | | (i) Draw a Punnett square to show the offspring from a male homozygous dominant for Huntington's disease and a female homozygous recessive for Huntington's disease. | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | | (2) | | | | | | | | | | | | | | | | | | | | | | | (ii) State the probability that the offspring shown in the Punnett square will have Huntington's disease. | | | | (1) | | | | | (Total for question = 3 mar | ks) | | | | | _ | _ | |----|----------| | rn | <b>h</b> | | w | | | ٦ | ranscription | and translation | are stages in | the synthesi | is of proteins. | |---|--------------|-----------------|---------------|--------------|-----------------| | • | ransonption | and translation | are stages in | | o or protonio. | The inheritance of different alleles affects the phenotype of an individual. A child is blood group O. The child's mother is blood group A and the child's father is blood group B. Explain how this child is blood group O. Use the Punnett square and probability in your answer. | | | (6 | |------|---|------| | | 1 | | | | | | | | | • | | | | | | | | | | | | | | L | | I | | <br> | | <br> | | <br> | | <br> | | | | | | <br> | | | | | | <br> | | <br> | | <br> | | <br> | | | | | | | | | | <br> | | <br> | | <br> | | <br> | | | | | | | | | | <br> | Q6. | Explain how two parents with a dominant phenotype can produce offspring expressing a recessive characteristic. | (2) | |----------------------------------------------------------------------------------------------------------------|-----| | | | | | | | | • | | | | | (Total for question = 2 mar | ks) | | Q7. | | | Explain why sperm determine the sex of offspring at fertilisation. | | | | (2) | | | | | | | | | | | (Total for question = 2 mar | ks) | ### Q8. Haemochromatosis is a disease that occurs when iron accumulates in the liver. A person with haemochromatosis is treated by having 0.5 dm³ of their blood removed each week. This lowers the level of iron in their blood. | (i) Give <b>two</b> safety precautions needed whe | · | • 1 | |-------------------------------------------------------------------------------|-----------------------------------------------|-----| | 1 | (2 | :) | | · · · · · · · · · · · · · · · · · · · | | | | | | | | 2 | | | | | | | | (ii) Haemochromatosis can be inherited. | | | | Haemochromatosis occurs when a person Figure 9 shows the inheritance of haemo | on inherits two copies of a recessive allele. | | | female Z | homozygous dominant male | | | Temate 2 | heterozygous male | | | | homozygous dominant female | | | | homozygous recessive female | | | F | igure 9 | | | State and explain the genotype of female | | | | | (3 | ) | | | | | | | | | | | | | | | | | | | | | | | | | ### Q9. | The allele for bloo | d group A and the | allele for blood gro | up B are codominar | nt. | | |----------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|-----|--| | Gregor Mendel investigated the inheritance of alleles using flowering plants. | | | | | | | He showed that the allele for red flowers ( $I^R$ ) is codominant with the allele for white flowers ( $I^W$ ). | | | | | | | A heterozygous pl | ant produces pink t | flowers. | | | | | (i) Give the genot | ype for a plant prod | ducing white flowers | S. | | | | | | | | (1) | | | (ii) Explain the ou | tcome if two plants | that produce pink | flowers are crossed | l. | | | You should cor | mplete the Punnett | square as part of y | our answer. | (4) | | | | | | | (4) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | L | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### Q10. Haemochromatosis is a disease that occurs when iron accumulates in the liver. A person with haemochromatosis is treated by having 0.5 dm³ of their blood removed each week. This lowers the level of iron in their blood. | (i) Give <b>two</b> safety precautions needed who | | |----------------------------------------------------------------------------------|-------------------------------------------------------------------------| | 1 | (2) | | 2 | | | | | | (ii) Haemochromatosis can be inherited. | | | Haemochromatosis occurs when a person Figure 6 shows the inheritance of haemone. | on inherits two copies of a recessive allele. ochromatosis in a family. | | female Z | homozygous dominant male | | Terriale 2 | heterozygous male | | <del> </del> | homozygous dominant female | | | homozygous recessive female | | F | igure 6 | | State and explain the genotype of female | e Z. (3) | | | | | | | | | | | | | | | | | | | ### Q11. Duchenne muscular dystrophy is a recessive sex-linked genetic disorder. This disorder causes muscle weakness. Figure 14 shows the inheritance of Duchenne muscular dystrophy in a family. Figure 14 | State and explain the phenotype of person Z. | | |----------------------------------------------|-----| | | (3) | | | | | | | | | 1 | | | ı | | | | | | | | | i | | | • | | | | | | | #### Q12. Huntington's disease is a genetic disorder. Huntington's disease is caused by a dominant allele (H). Figure 6 shows the inheritance of Huntington's disease in a family. Figure 6 | (1) | State the genotype of the male in the 1st generation. | (1) | |-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------| | <br>(ii) | It is possible for a female with Huntington's disease to have one of two genotypes. State the two genotypes possible for a female with Huntington's disease. | (2) | | <br>(iii) | Explain which Huntington's disease genotype the female in the 1st generation must l | <br>oe.<br>(3) | | | | | | | | | | | | | Q13. Duchenne muscular dystrophy is a sex-linked recessive genetic disorder caused by a mutation on a single gene on the X-chromosome. The letter D can be used for the dominant allele and the letter d for the recessive allele. Figure 5 shows the inheritance of Duchenne muscular dystrophy in a family. | | | Figure 5 | | |----------|-----|--------------------------------------------------------------------------------------|------| | (i) | Wha | at is the percentage chance of any child from person A inheriting the mutated allele | ? | | | | | (1) | | | Α | 0% | | | | В | 25% | | | | С | 50% | | | | D | 75% | | | (ii)<br> | Ехр | lain the conclusion that can be made about the genotype of person C. | (2) | | | | | | | | | /Total for question = 2 may | ·ko\ | ### Q14. The DNA of an organism determines its phenotype. White tigers are produced because of a mutation of a single allele which usually produces the normal orange and yellow fur pigmentation. The mutated allele is recessive. Samba, a male white tiger, was bred with Rani. They had three offspring; two offspring have white fur and one has a normal fur pigmentation. | (i) | State the genotype of Rani. | | | |------|--------------------------------------------------------------------------------------------|------------------------------|----------------------------------| | | | | (1) | | | | | | | | | | | | (ii) | The offspring with normal fur | r pigmentation was bred with | a tiger that was heterozygous. | | | Use A/a to represent the alleled Predict, using the Punnett squares having permal fur pigm | uare, the percentage probab | ility of the offspring from this | | | cross having normal fur pigm | entation. | (2) | | | | | | | | | | | | | | | | | | - | | | | | | | | | | pero | centage probability = | -<br>% | (1) | $\sim$ | 4 | _ | |--------|---|---| | | 7 | ~ | | | | | | Sickle | cell | disease | is a | recessive | genetic | disorder | in | humans. | |--------|------|---------|------|-----------|---------|----------|----|---------| | | | | | | | | | | (i) Two parents are heterozygous for sickle cell disease.Complete the Punnett square to show the possible genotypes of their children. D d D | (ii) Sta | ate the percentage | probability that | t their childre | n could have si | ckle cell disease. | | |--------------------|-------------------------|------------------|-----------------|-----------------|--------------------|-------| | | | | | | | (1) | | | | percentage | probability = | | | % | | (iii) A<br>childre | father with the general | otype dd and a | mother with | the genotype [ | DD plan to have se | veral | | Ex | plain why none of t | heir children w | ill have sickle | cell disease. | | (2) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### Q16. Eye colour is controlled by genes. The allele for brown eyes, B, is dominant to the allele for blue eyes, b. (a) A female with blue eyes and a male with brown eyes are about to have a child. Complete the Punnett square to determine the phenotype of the child. (2) | | - | man | | | |-------|-----|-----|---|--| | | /40 | В | В | | | | b | | | | | woman | b | | | | Phenotype of child ..... (b) A scientist recorded the eye colour of 30 people. The results are shown in Figure 1. | blue | green | blue | brown | brown | brown | hazel | blue | | |-------|-------|-------|-------|-------|-------|-------|-------|-------| | brown | hazel | blue | blue | hazel | green | brown | brown | | | blue | green | brown | brown | blue | hazel | blue | brown | brown | | brown | blue | brown | brown | brown | | | | | Figure 1 (Total for question = 5 marks) (2) (i) Complete the tally chart, in Figure 2, for this data. | | eye c | olour | | |------|-------|-------|-------| | blue | brown | green | hazel | | otal | total | total | total | Figure 2 | (ii) Give another appropriate method of displaying this information. | (1) | |----------------------------------------------------------------------|-----| | | | | | | #### Q17. Figure 1 shows a pea plant with flowers. Figure 1 The seeds produced by this pea plant can be round or wrinkled. The allele for round seeds (R) is dominant to the allele for wrinkled seeds (r). (i) A homozygous dominant round seeded plant was crossed with a homozygous recessive wrinkled seeded plant. Complete the Punnett square to show the genotypes of the offspring. (1) | | r | r | |---|---|---| | R | | | | R | | | | (ii) | State the percentage of | f the offspring that | t will produce rounc | l seeds | |------|-------------------------|----------------------|----------------------|---------| |------|-------------------------|----------------------|----------------------|---------| (1) percentage = ..... % (iii) Which scientist discovered the basis of genetic inheritance by crossing pea plants? (1) - A Charles Darwin - B Alfred Wallace - C Louis Leakey - D Gregor Mendel (1) ### Q18. Sickle cell anaemia is a recessive genetic condition that affects the shape of a person's red blood cells. A child inherits either a dominant or a recessive allele from each parent. A child must inherit two recessive alleles to be affected by the condition. (i) Figure 2 shows a Punnett square with the parental genotypes completed. The letter ${\bf B}$ has been used for the dominant allele and the letter ${\bf b}$ for the recessive allele. Complete the Punnett square to show the genotypes of the offspring. father B b mother b Figure 2 | (ii) Calculate the percentage chance of a child being born with sickle cell anaemia | | | | |-------------------------------------------------------------------------------------|-------|--|--| | | (1) | | | | | % | | | | (iii) Give the reason why the parents' genotype is described as heterozyc | gous. | | | | | (1) | | | | | | | | | | | | | | | | | | (6) | $\sim$ | 4 | ^ | |--------|---|----| | 11 | 7 | u | | w | | 3. | Gregor Mendel investigated the genetics of peas. He did not know about genes but showed that inherited characteristics can be dominant or recessive. | (a) | Explain how | Mendel used h | homozygous tall | and hom | ozygous | short pea | plants t | o show | |------|-----------------|----------------|-------------------|---------|---------|-----------|----------|--------| | that | the tall allele | is dominant to | the short allele. | • | | | | | | (2) | |-----| | | | | | | | | \*(b) Figure 16 shows a drosophila fruit fly. Figure 16 The brown body colour of a drosophila fruit fly is dominant to black body colour and is not sex-linked. Explain how Gregor Mendel could have used a brown drosophila fruit fly and a black drosophila fruit fly to show that brown body colour is dominant to black body colour. | <br> | |------| | <br> | | <br> | | | | | | | | <br> | | $\sim$ | • | ^ | | |--------|---|---|--| | w | _ | u | | | | | | | | Cystic fibrosis | s is a genetic con | dition that can also ca | use live | r disease. | | |-----------------|--------------------------------------------|----------------------------------------------------|---------------|--------------------------------|-----| | (i) State whe | re genes are four | nd in cells. | | | (1) | | | | | | | (1) | | (ii) Figure 6 s | shows the inherita | ance of cystic fibrosis | in a fam | ily. | | | • | | allele that does not ca<br>allele that causes cyst | • | | | | | person A ( <b>Ff</b> ) | person B | Key | | | | | | LO | 0 | female without cystic fibrosis | | | | | | | female with cystic fibrosis | | | | | | | male without cystic fibrosis | | | | O | | | male with cystic fibrosis | | | person C | person D | person E ( <b>ff</b> ) | | | _ | | | | Figure 6 | | | | | | t states that the g<br>ny the scientist is | enotype of person B is correct. | s <b>Ff</b> . | | | | | , | | | | (2) | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | (iii) State the | genotype of pers | son C. | | | | | | | | | | (1) | | | | | | | | | | | | | | | ### Q21. Gregor Mendel investigated genetic inheritance using pea plants. Figure 3 shows some of the equipment used in this investigation. Figure 3 In an investigation, Mendel crossed pea plants that produced yellow seeds (AA) with pea plants that produced green seeds (aa). The dominant allele is shown as A. The Punnett square shows the genotypes of the offspring from this cross. | - | Α | А | |---|----|----| | a | Aa | Aa | | a | Aa | Aa | | Explain a conclusion that can be made from the results of this cross. | | |-----------------------------------------------------------------------|-----| | | (2) | | | | | | | | | | | | | # Mark Scheme Q1. | Question<br>number | Answer | | | | Additional guidance | Mark | |--------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|-----|-----------------------------------------|------------------------------------------------------------------|------------| | (i) | One mark for gametes<br>One mark for the offspring | | | | accept aA | (3)<br>AO3 | | | | A | a | | | 2a+2b | | | А | AA | Aa | | | Exp | | | a | Aa | aa | | | | | | 25 (%) (1) | | | *************************************** | accept ecf from<br>the Punnett<br>square | | | Question<br>number | Answer | | | Addition | nal guidance | Mark | | (ii) | An answer lin | king the followir | ng: | | | (2) | | | | variation increands show variat | | accept al | fferent<br>tion of alleles<br>lows dispersal of<br>through seeds | AO2 1 | | | disease<br>change<br>pressui | kely to survive of a / environmenta / selection re} / allows on/survival of the (1) | al | | her examples of<br>I reason e.g<br>isaster | | ### Q2. | Question<br>number | Answer | Mark | |--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | | An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (1 mark): • Mendel crossed homozygous tall and homozygous short pea plants and produced all tall offspring (1) • therefore all the offspring had a heterozygous genotype with one tall and one short allele showing that the tall allele is dominant (1) | (2) | # Q3. | Question<br>Number | Answer | Mark | |--------------------|------------------------------------------------------------------------|--------| | (i) | B phenotype | (1) | | | 1. The only correct answer is B | AO 1 1 | | | <b>A</b> is not correct because genotype is the combination of alleles | | | | C is not correct because an allele is an alternative version of a gene | | | | D is not correct because gametes are sex cells | | | Question<br>Number | Answer | Additional guidance | Mark | |--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------| | (ii) | An explanation linking three of the following: | | (3) | | | the first generation were<br>heterozygous (1) | accept first generation are carriers | AO 2 1 | | | <ul> <li>offspring {needed two<br/>wrinkled alleles/are<br/>homozygous} to have wrinkled<br/>seeds (1)</li> </ul> | accept traits for alleles | | | | 25% offspring have wrinkled<br>seeds (1) | accept 1 in 4 | | | | wrinkled is recessive / round is<br>dominant (1) | | | | | | wrinkled seeds are<br>homozygous recessive<br>= 2 marks | | | | | accept annotated<br>Punnett squares/<br>genetic diagrams | | # Q4. | Question<br>number | Answer | | | | Additional guidance | Mark | |--------------------|------------------------------------------------------------------|--------|------------|------|--------------------------------------------------------------------------------|------| | (i) | | | Н | Н | accept other letters | (2) | | | | h | Hh | Hh | accept correct<br>offspring genotypes<br>for incorrect | | | | | h | Hh | Hh | gametes as error<br>carried forward | | | | accept male ar<br>reversed<br>Correct gamete<br>Correct offsprir | es (1) | lle genoty | /pes | accept alternative<br>correct genetic<br>diagrams instead of<br>Punnett square | | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|----------|--------------------------------------------------------------------------------------|------| | (ii) | 100% / 1 | accept 4 out of 4/ all offspring<br>ecf for their offspring in the<br>Punnett square | (1) | | | | Ignore ratios | | # Q5. | Question<br>number | Indicative | Mark | | | |--------------------|----------------|-------------------------------|-------------------|---------------| | | A02 | | | (6)<br>AO2(1) | | | | I <sup>B</sup> | I° | 7 | | | I <sup>A</sup> | I <sup>A</sup> I <sup>B</sup> | I <sup>A</sup> I° | | | | I° | Io IB | Iº Iº | | | | Indicative co | ontent | | | | Level | Mark | Descriptor | |---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | 0 | No awardable content | | Level 1 | 1-2 | <ul> <li>The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question.</li> <li>Lines of reasoning are unsupported or unclear. (AO2)</li> </ul> | | Level 2 | 3-4 | <ul> <li>The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question.</li> <li>Lines of reasoning mostly supported through the application of relevant evidence. (AO2)</li> </ul> | | Level 3 | 5-6 | <ul> <li>The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question.</li> <li>Lines of reasoning are supported by sustained application of relevant evidence. (AO2)</li> </ul> | ### Q6. | Question<br>number | Answer | Mark | |--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | | An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (1 mark): • both parents must be heterozygous for the recessive allele (1) • so the offspring must inherit the recessive allele from each parent (1) | (2) | ### Q7. | Question<br>number | Answer | | | | |--------------------|--------------------------------------------------------------------------------------------------------------------------|-----|--|--| | | An explanation that combines identification of knowledge (1 mark) and reasoning / justification -understanding (1 mark): | | | | | | <ul> <li>sperm can either carry an X or a Y (chromosome) / egg cells<br/>carry only X (chromosomes) (1)</li> </ul> | | | | | | XX results in female and XY in a male (1) | (2) | | | # Q8. | Question<br>Number | Answer | Additional Guidance | Mark | |--------------------|------------------------------------------------------------|-----------------------------------------------------------------|-------| | (i) | Any <b>two</b> from: | | (2) | | | wear gloves (1) | accept wash hands /<br>wear a mask | AO2 2 | | | clean the area of skin<br>where blood being<br>removed (1) | accept disinfect /<br>clean the wound | | | | cover the wound after (1) | | | | | use a sterile needle (1) | ignore clean | | | | | accept sit the person<br>down (1) | | | | | ignore references to<br>removing the correct<br>volume of blood | | | Question<br>Number | Answer | Additional Guidance | Mark | |--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|------| | (ii) | heterozygous | accept carrier /<br>dominant and recessive | (3) | | | An explanation linking: | allele / Hh | A03 | | | affected offspring<br>must have inherited<br>the recessive allele (1) | accept one offspring is<br>homozygous recessive | | | | <ul> <li>unaffected offspring<br/>must have inherited<br/>dominant allele (1)</li> </ul> | accept one / two<br>offspring are<br>homozygous dominant | | | | | accept a <b>labelled</b> Punnett square for any mark point | | Q9. | Question<br>Number | Answer | Additional<br>Guidance | Mark | |--------------------|-----------------------------------------------------------|----------------------------------|--------------| | (i) | I <sup>w</sup> I <sup>w</sup> / homozygous I <sup>w</sup> | ignore<br>homozygous<br>dominant | (1)<br>AO2 1 | | Question<br>Number | Answer | | | Additional<br>Guidance | Mark | |--------------------|---------------------------|----------------------------------------|------------------------------------------------------------|------------------------|--------------| | | An explanati cor gen cor | rect gamet<br>otype (1) | the following:<br>res / parental<br>etion of the<br>re (1) | Guidance | Mark (4) AO3 | | | pii<br>• 25<br>flo | nk flowers<br>% will prod<br>owers and | duce white | <u> </u> | | # Q10. | Question<br>Number | Answer | Additional Guidance | Mark | |--------------------|------------------------------------------------------------|-----------------------------------------------------------------|-------| | (i) | Any <b>two</b> from: | | (2) | | | wear gloves (1) | accept wash hands /<br>wear a mask | AO2 2 | | | clean the area of skin<br>where blood being<br>removed (1) | accept disinfect /<br>clean the wound | | | | cover the wound after (1) | | | | | use a sterile needle (1) | ignore clean | | | | | accept sit the person<br>down (1) | | | | | ignore references to<br>removing the correct<br>volume of blood | | | Question<br>Number | Answer | Additional Guidance | Mark | |--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|------| | (ii) | heterozygous | accept carrier /<br>dominant and recessive | (3) | | | An explanation linking: | allele / Hh | A03 | | | affected offspring<br>must have inherited<br>the recessive allele (1) | accept one offspring is<br>homozygous recessive | | | | <ul> <li>unaffected offspring<br/>must have inherited<br/>dominant allele (1)</li> </ul> | accept one / two<br>offspring are<br>homozygous dominant | | | | | accept a <b>labelled</b> Punnett square for any mark point | | # Q11. | Question<br>Number | Answer | | Mark | |--------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------| | | Phenotype: | | (3) | | | must be unaffected male (1) | | AO 3 1b<br>AO 3 2a | | | Explanation including the following: | | AO 3 2b | | | he has the dominant allele /<br>males have one copy of the<br>allele as is on the X<br>chromosome (1) | accept X <sup>D</sup> Y<br>(accept any other<br>capital letter) for<br>1 mark | | | | (needs a dominant allele) in<br>order to have an unaffected<br>daughter (1) | | | | | | accept a Punnett<br>square to show<br>marking points if<br>annotated. | | # Q12. | Question<br>number | Answer | Additional guidance | Mark | |--------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|------| | (i) | Homozygous recessive / 2 lower case letters e.g. hh | accept any<br>recognisable<br>upper/lower case<br>letters as<br>appropriate | (1) | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|------| | (ii) | Homozygous dominant / HH(1) Heterozygous / Hh (1) | accept any<br>recognisable<br>upper/lower case<br>letters as<br>appropriate | (2) | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------| | (iii) | An explanation that combines identification via a judgment (1 mark) to reach a conclusion via justification/reasoning (2 marks): • the female in the 1st generation is heterozygous / Hh (1) • because some of her children had Huntington's / some of her children did not have Huntington's (1) • to have the disease they must inherit a dominant allele / to not have the disease they must inherit (two) recessive alleles (1) | accept if she was<br>HH all her<br>children would<br>have<br>Huntington's | (3) | | | | accept correct<br>Punnett square<br>with<br>identification for<br>2 marks | | # Q13. | Question<br>number | Answer | Mark | |--------------------|--------|------| | (i) | С | (1) | | Question<br>number | Answer | Mark | |--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | (ii) | An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): • genotype is X <sup>D</sup> X <sup>d</sup> /she must have one dominant and one recessive allele (1) • because her daughter must have received the recessive allele and her son has inherited a dominant allele (1) | | | | | (2) | # Q14. | Question<br>number | Answer | Additional guidance | Mark | |--------------------|--------------|-------------------------------------------------|------| | (i) | heterozygous | accept alleles showing<br>heterozygous genotype | (1) | | Question<br>number | Answer | | | | Mark | |--------------------|-----------------------------|------------------|-------------|----|------| | (ii) | <ul> <li>correct</li> </ul> | Punnett square | (1) | | | | | 1 | | Α | a | | | | 1 | Α | AA | Aa | | | | 1 | а | Aa | aa | | | | • 75% no | ormal fur pigmer | ntation (1) | | (2) | # Q15. | Question<br>Number | Answer | | | Mark | |--------------------|------------------|----|----|--------| | (i) | | 7 | | (1) | | | | D | d | AO3 2a | | | D | DD | Dd | | | | d | Dd | dd | | | | Accept dD for Dd | | | | | Question<br>Number | Answer | Mark | |--------------------|--------|---------------| | (ii) | 25 (%) | (1)<br>AO3 2b | | | | | | Question<br>Number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | (iii) | all the children will have the genotype Dd / will be heterozygous (1) | accept children will always inherit a dominant allele / D from their mother accept a correctly completed Punnett square for this marking point | (2)<br>AO2 1 | | | <ul> <li>but to have sickle cell disease<br/>the children must have {the<br/>genotype dd / two recessive<br/>alleles} (1)</li> </ul> | | | ### Q16. | Question<br>number | Answer | | | | Mark | |--------------------|----------------------------------------------|----------|-------------|----|------| | (a) | A completed Punnett offspring alleles of | | | : | | | | | - | m | an | | | | _ | | В | В | | | | | b | Bb | Bb | | | | woman | b | Bb | Bb | | | | phenotype of chi | ld: brow | vn eves (1) | | , | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|-----------------------------------------------------------------------------------|----------------------------------------------|------| | (b) (i) | All four columns correct (tally and total) (2) One or two correct columns (1) | blue: 9<br>brown: 14<br>green: 3<br>hazel: 4 | (2) | | Question<br>number | Answer | Mark | |--------------------|---------------------------------------------|------| | (b)(ii) | Could be displayed as a bar chart/pie chart | (1) | # Q17. | Question<br>number | Answer | | | | Mark | |--------------------|---------------|-----------|----|-----------|------| | (i) | 9 | 02- 0 | | (1) | | | | 24 | r | r | _ | AO2 | | | R | Rr | Rr | Accept rR | | | | R | Rr | Rr | | | | | Correct offsp | oring (1) | | | | | Question<br>number | Answer | Additional guidance | | |--------------------|--------|------------------------------------------------------------------------|------------| | (ii) 100% (1) | | accept correct<br>percentage from<br>incorrect Punnett<br>square in i. | (1)<br>AO2 | | Question<br>number | Answer | Mark | |--------------------|--------------------------------------------------------------------------------------------------|------------| | (iii) | D Gregor Mendel iii The only correct answer is D | (1)<br>AO1 | | | A is not correct because Charles Darwin did not discover the basis of genetic inheritance | | | | <b>B</b> is not correct because Alfred Wallace did not discover the basis of genetic inheritance | | | | <b>C</b> is not correct because Louis Leakey did not discover the basis of genetic inheritance | | # Q18. | Question<br>number | | Answer | Additional guidance | Mark | | |--------------------|-----------------------|--------|---------------------|---------------------|-----| | (i) | correct offspring (1) | | | | | | | | В | ь | | | | | В | ВВ | Bb | accept bB for<br>Bb | | | | ь | Вb | b b | | | | | | | , | | (1) | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|--------|-----------------------------------------|------| | (ii) | 25(%) | ecf for incorrect Punnett square in 1bi | (1) | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|---------------------------------------------------------------|------------------------------|------| | (iii) | two different <b>alleles/</b> a dominant and recessive allele | accept they are carriers | | | 9 | | ignore they are not affected | (1) | ### Q19. | Question<br>number | er | | |--------------------|----|--| | (a) | | | | Question<br>number | Indicative content | Mark | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | *(b) | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which | | | | is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2 (6 marks) | | | | <ul> <li>cross the brown fruit fly and black fruit fly</li> <li>identify the phenotype of the offspring</li> <li>all the phenotype will be brown body</li> <li>remove the parent flies</li> <li>cross brown offspring</li> <li>identify the phenotypes of the 2nd generation offspring</li> <li>½ will be black body and ¾ will be brown body</li> <li>the results would show the same ratio as Mendel's pea plant crosses</li> </ul> | (6) | | Level | Mark | Descriptor | | |---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | | 0 | No awardable content | | | Level 1 | 1-2 | <ul> <li>The explanation attempts to link and apply knowledge and<br/>understanding of scientific enquiry, techniques and<br/>procedures, flawed or simplistic connections made between<br/>elements in the context of the question. (AO2)</li> </ul> | | | 3 | 6 | <ul> <li>Lines of reasoning are unsupported or unclear. (AO2)</li> </ul> | | | Level 2 | 3-4 | <ul> <li>The explanation is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. (AO2)</li> <li>Lines of reasoning mostly supported through the application of relevant evidence. (AO2)</li> </ul> | | | Level 3 | 5-6 | <ul> <li>The explanation is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. (AO2)</li> <li>Lines of reasoning are supported by sustained application of relevant evidence. (AO2)</li> </ul> | | # Q20. | Question<br>number | Answer | Additional guidance | Mark | |--------------------|----------------------------------|----------------------------------------------------------------|--------------| | (i) | in the nucleus / on a chromosome | accept on DNA / it is<br>part of DNA<br>accept in mitochondria | (1)<br>AO1 1 | | Question<br>number | Answer | Additional guidance | Mark | | |--------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|--| | (ii) | An explanation including: | 0 | (2) | | | | <ul> <li>person B must have an F<br/>allele because she does not<br/>have cystic fibrosis (1)</li> </ul> | | AO2 2 | | | | <ul> <li>person B must have an f<br/>allele because person E must<br/>have inherited an f allele<br/>from her (1)</li> </ul> | accept because person E<br>is ff / homozygous<br>recessive | | | | Question<br>number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|---------------------------------|--------------| | (iii) | ff (both letters must be lower case) | accept: homozygous<br>recessive | (1)<br>AO2 1 | | | | accept: double recessive | | | | | accept: 'two small fs' | | # Q21. | Question<br>Number | Answer | Mark | |--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------| | | Any two from: | (2) | | | <ul> <li>all offspring are the same/Aa / produced yellow seeds/have same genotype (1)</li> <li>as dominant allele (A) present in genotype of offspring)/ are heterozygous (1)</li> <li>proves that both parents are homozygous (1)</li> </ul> | AO 3 2a<br>AO 3 2b |