M1. (a) 1. Dissolve in alcohol, then add water;
2. White emulsion shows presence of lipid.

(b) Glycerol.

(c) Ester.

(d) Y (no mark)
Contains double bond between (adjacent) carbon atoms in hydrocarbon chain.

(e) 1. Divide mass of each lipid by total mass of all lipids (in that type of cell);
2. Multiply answer by 100.

(f) Red blood cells free in blood / not supported by other cells so cholesterol helps to maintain shape;
Allow converse for cell from ileum – cell supported by others in endothelium so cholesterol has less effect on maintaining shape.

(g) 1. Cell unable to change shape;
2. (Because) cell has a cell wall;
3. (Wall is) rigid / made of peptidoglycan / murein.

M2. (a) 1. Starch formed from α-glucose but cellulose formed from β-glucose;
2. Position of hydrogen and hydroxyl groups on carbon atom 1 inverted.

(b) 1. Insoluble;
2. Don't affect water potential;
\textit{OR}
3. Helical;
\textit{Accept form spirals}
4. Compact;
\textit{OR}
5. Large molecule;
6. Cannot leave cell.

(c) 1. Long and straight chains;
2. Become linked together by many hydrogen bonds to form fibrils;
3. Provide strength (to cell wall).

M3.(a) 1. Helicase;
2. Breaks hydrogen bonds;
3. Only one DNA strand acts as template;
4. RNA nucleotides attracted to exposed bases;
5. (Attraction) according to base pairing rule;
6. RNA polymerase joins (RNA) nucleotides together;
7. Pre-mRNA spliced to remove introns.

(b) 1. Polymer of amino acids;
2. Joined by peptide bonds;
3. Formed by condensation;
4. Primary structure is order of amino acids;
5. Secondary structure is folding of polypeptide chain due to hydrogen bonding;
\textit{Accept alpha helix / pleated sheet}
6. Tertiary structure is 3-D folding due to hydrogen bonding \textbf{and} ionic / disulfide bonds;
7. Quaternary structure is two or more polypeptide chains.
(c) 1. Hydrolysis of peptide bonds;
 2. Endopeptidases break polypeptides into smaller peptide chains;
 3. Exopeptidases remove terminal amino acids;
 4. Dipeptidases hydrolyse / break down dipeptides into amino acids.

M4.(a) 1. Maltose;
 2. Salivary amylase breaks down starch.

(b) Maltase.

(c) (Mimics / reproduces) effect of stomach.

(d) 1. Add boiled saliva;
 2. Everything same as experiment but salivary amylase denatured.

(e) 1. Some starch already digested when chewing / in mouth;
 2. Faster digestion of chewed starch;
 3. Same amount of digestion without chewing at end.

 Accept use of values from graph

M5.(a) 1. A: phospholipid (layer);
 1. Reject hydrophobic / hydrophilic phospholipid

 2. B: pore / channel / pump / carrier / transmembrane / intrinsic / transport protein;
 2. Ignore unqualified reference to protein
(b) (i) Condensation (reaction);

(ii) Organelle named; Function in protein production / secretion;

Function must be for organelle named

Incorrect organelle = 0

eg

1. Golgi (apparatus);
 1. Accept smooth endoplasmic reticulum

2. Package / process proteins;

OR

3. Rough endoplasmic reticulum / ribosomes;
 3. Accept alternative correct functions of rough endoplasmic reticulum. ER / RER is insufficient
 3. Accept folding polypeptide / protein

4. Make polypeptide / protein / forming peptide bonds;

OR

5. Mitochondria;

6. Release of energy / make ATP;
 6. Reject produce / make energy
 6. Accept produce energy in the form of ATP

OR

7. Vesicles;

8. Secretion / transport of protein;