This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE®, Cambridge International A and AS Level components and some Cambridge O Level components.
Mark scheme abbreviations:

; separates marking points
l alternative answers for the same point
R reject
A accept (for answers correctly cued by the question or by extra guidance)
AW alternative wording (where responses vary more than usual)
underline actual word given must be used by candidate (grammatical variants accepted)
max indicates the maximum number of marks that can be given
ora or reverse argument
mp marking point (with relevant number)
ecf error carried forward
I ignore
AVP alternative valid point (examples given as guidance)
1 (a) (i) mitochondria; A mitochondrion

(ii) can change shape/fluid membrane structure/ref. to flexible; different orientation when section taken/AW; A different sections cut some may be dividing/ref. to mitochondrial fission; I growing

(b) (i) ribosomes; A ribosome ref. to size e.g. 70 S/80 S

(ii) circle around 0.025 µm ;

(c) (i) plasmodesmata; A plasmodesma

(ii) assume answer is in context of between adjacent cells but R if within a cell
I incorrect naming of plasmodesmata
I description of cytoplasmic strands
facilitates/more rapid/allows/AW, transport/communication/exchange
/transfer (of substances);
substances do not need to cross, cell (surface) membranes/cell walls;
for, movement/AW, of, substances/materials/nutrients/water;
named example;
e.g. movement/diffusion/AW, of sucrose to sieve tube (from companion/transfer, cell)
water travels by, symplastic pathway I incorrect mechanism e.g. osmosis
water avoids, apoplastic/cell wall, pathway
proteins too large to cross, cell wall/cell surface membrane
A idea of substances moving in and out of cells only if plasmodesmata given in (i)

(d) I descriptions e.g. extensions/hair-like
microvilli/A microvillus R villi/villus R cilia
and one from:
absorption/uptake of products of digestion
secretion/release of (extracellular), enzymes/other named secretion
digestion (at the cell surface)/breakdown of (ingested) food/AW
excretion/release of, waste/excess, substances
increases surface area ;
2 (a) I ref. to other components of tobacco smoke that enter bloodstream

1 contains carbon monoxide and nicotine (which contribute); R if tar also stated

contribution to atherosclerosis

2 damage to AW, endothelium / (inner) lining / tunica intima / inner wall; A also as consequence of increased blood pressure mp8

3 increased accumulation of LDLs; AW in context of the vessel walls A cholesterol / lipids / lipoproteins / fats / triglycerides

4 inflammation;

5 more / arrival of / attraction of, phagocytes / macrophages / monocytes / neutrophils;

A leucocytes / white blood cells

A phagocytes, have increased adherence / 'stick' more, to lining

6 phagocytes engulf, LDLs / AW, and die (in situ) or formation of / presence, foam cells;

7 (contributes to) formation of, atheroma / atheromatous plaque; A plaque I atherosclerosis

features that may have a consequential effect

8 one risk factor (caused by components of smoke); one from:

increased blood pressure must be in context e.g. adrenalin release owing to nicotine I atheroma increases blood pressure

increased stickiness of platelets (promotes clotting)

thrombus formation / thrombosis / (blood) clotting

increased, (serum) cholesterol / triglyceride / LDL, concentration decreased, HDL / 'good' cholesterol, concentration

increased, oxidation / reactivity / AW, of LDLs [max 3]

(b) (i) phagocytosis; A act as phagocytes

engulf / attack / destroy / AW, pathogens / bacteria / microorganisms;

A viruses

A act as, antigen presenting cells / APCs

I antigens / foreign organisms / organisms

remove / engulf / AW, foreign substances / dead cells / cell debris / AW; [max 1]
(ii) following inhalation I ref. to contract / relax
1 alveoli / air sacs / lungs, over expand / over inflate / over stretch / AW ;
2 (alveoli have) no / poor, recoil ; A do not, rebound
 A lungs do not, recoil / deflate properly
3 (alveoli / lungs) cannot return to normal size / remain, (fully) stretched ;
 A do not, decrease in size after, stretching / inhalation / AW
4 alveoli / air sacs, do not push out air (effectively) / have trapped air / AW ;
 I oxygen trapped [max 2]

(c) (i) biological catalyst / described ;
e.g. biological molecule / protein that, increases the rate of / catalyses
 speeds up, a reaction
molecule that, increases the rate of / speeds up / catalyses, metabolic
 / biological / cell(ular) reaction

 one of:
globular protein ;
remains unchanged (at end of reaction) / not used up (in reaction) ;
 lowers the activation energy (of a reaction) ;
 [max 2]

(ii) points can be gained from diagrams if not contradicted in written answer

1 (shape of) substrate / elastin, complementary to (shape of) active site ;
 R matching / same
 A description e.g. substrate fits (into) active site
 diagram – label active site + substrate (shapes must be complementary)

2 lock is, enzyme / elastase / active site, and key is, substrate / elastin ;
3 formation of, enzyme-substrate complex / ES complex / ESC ;
 A successful collision between enzyme and substrate
 A substrate, binds / AW, at / to, the active site
 diagram – ESC no label required if following on from mp1

4 peptide fragments / peptides / products, released / formed ; A amino acids
 diagram – allow without label if sequence clear and products shown
 following points need to be annotated if shown on diagram

5 hydrogen / temporary, bonds form between, enzyme / active site, and
 substrate ;
6 detail of how Ea lowered ; term Ea not required and points can be
general
 strain on (peptide) bond
electron transfers
reactants held close for bond forming (i.e. water joining) [max 3]
(d)(i) I active site of A1AT changes shape/acts as non-competitive inhibitor
R if macrophage elastase stated
cannot bind/not complementary, to active site; A elastase/enzyme
H/temporary, bonds cannot form with active site;
no longer, prevents entry/binding, of substrate; A (so) substrate can bind [max 1]

(ii) consequence must be correctly linked to an event
1 neutrophil elastase, active/not inhibited/AW; A increase rate of reaction
2 (so) TIMP-1 inactivated; A other/macrophase elastase, inhibitor
3 (so) macrophage elastase, active/functioning/not inhibited/not regulated;
4 (so) more, macrophage and neutrophil/of both elastases, (to breakdown elastin);
5 ref. to consequence; e.g. bursting alveoli/breakdown of alveolar walls/formation one large air sac/decrease in surface area for gas exchange [max 3]

(e) 1 mRNA, binds/AW, to ribosome; A ribosomal RNA I rRNA
A mRNA moves to ribosome
2 tRNA with amino acid (to/at, ribosome); A aminoacyl/charged, tRNA
3 tRNA/anticodon, specific to an amino acid; A specific tRNA/anticodon for the amino acid
4 ref. to start codon; A AUG(met) /first codon is AUG/initiator tRNA ;
5 (complementary) base pairing/binding, between anticodon and codon;
6 first and second tRNAs bind/two tRNAs bound (at a time)
or (tRNAs bring) amino acids, side by side/close ;
7 peptide bond formation;
8 ribosome moves along, one codon/AW ;
9 next (aminoacyl) tRNA arrives/amino acids added one at a time ;
10 elastase/polypeptide, released when STOP codon reached;
A process continues until a STOP codon reached
11 AVP ; e.g. ref. to, aminoacyl/A, site, and, peptidyl/P, site
small subunit (of ribosome) attaches to mRNA
aminoacyl tRNA synthetase binds amino acid to tRNA
ATP required for tRNA-amino acid binding
peptidyl transferase for peptide bond formation
ref. to, exit/E, site, on ribosome ribosome moves 5’ to 3’ [max 5]

[Total: 20]

3 (a) A = interphase I ref. to early/late
C = metaphase ;
both needed for one mark [1]

(b) (C) L, N, M, K ; [1]
(c) 1 idea that centromere, has divided / divides
 (separating, sister / identical, chromatids) ;
 2 centromere attached to spindle fibre; A spindle
 3 shortening / contraction, of spindle fibres (pulling centromeres);
 A spindle, contracts / shortens
 4 (so) sister / identical, chromatids, move to opposite poles ;
 need idea of separated, so A ends / sides / halves
 A sister / identical, chromatids, will end up, at separate poles / in separate
 cells

 [max 3]

 [Total: 5]

4

(a) ignore descriptions or further qualification
 no marks for each box if other mechanisms given
 active transport ; A active uptake
 exocytosis ; I bulk transport / secretion
 diffusion ; I passive / simple R facilitated diffusion

 [3]

(b) I ref. to small increase in partial pressure causes more oxygen to associate
 A pp / pressure, for partial pressures
 1 this is the range of (partial) pressures occurring in respiring tissues ;
 A (partial) pressures in respiring tissues are low
 2 (for a) small / 1.6 kPa, decrease in partial pressure ;
 3 (so) allows, large quantity of / more, oxygen to, be released / dissociate ;
 A oxygen dissociates more, easily / readily
 4 affinity of haemoglobin to oxygen decreases ;
 in context of, as oxygen is released / as partial pressure decreases
 5 data to support ; e.g. 60–62% to 28–30% / 30–32% difference

 [max 2]

 [Total: 5]
5 (a) assume response refers to infectious unless otherwise stated

caused by a pathogen; ora A microorganism/microbe transmissible/communicable/passed from one, organism/person, to another; ora

generate examples to support explanation
two examples of pathogen types; two of: bacterium/bacteria virus/viruses fungus/fungi protoctist A protozoa

e.g. example of non-infectious, disease/category;
e.g. genetic disorders/named (e.g. sickle cell anaemia/cystic fibrosis)
cancer/named cancer (e.g. lung)
degenerative disease/named (e.g. chronic bronchitis, emphysema/COPD/coronary heart disease) lifestyle/AW

(b) (red blood cells contain) haemoglobin; plasma proteins; A plasma contains proteins named protein in blood plasma or within (red/white) cells;
e.g. fibrinogen/albumin/globulin/antibodies/ (protein) hormone/ enzyme/transport proteins/membrane proteins
R steroid hormone/named steroid hormone [max 2]

(c) (i) not all countries with Anopheles have malaria/example using Fig. 5.2;
e.g. (although, Anopheles/vector, shown as present), no/few, cases (of malaria) in, North America/Europe (although, Anopheles/vector, occurs elsewhere) malaria, only/mainly, in subtropical and tropical areas;

explanations:
Plasmodium/parasite/pathogen, not present in all areas where Anopheles is located/AW;
conditions (where Anopheles located) not always suitable for life cycle of, Plasmodium/parasite/pathogen;
some, areas/countries, have eradicated the disease (but still have the vector);
AVP; e.g. some countries have better prevention methods against malaria
AVP; some countries have effective treatment for malaria
I vaccination [max 3]
(c) (ii) assume ref. to A. gambiae unless stated otherwise

occurrence
1 (in Africa) wide distribution/large numbers;
2 occurs where high density of humans;
3 occurs (in climate) where Plasmodium is, present/able to survive; AW
 A e.g. idea of Plasmodium requiring temperatures above approx. 20°C
 where A. gambiae is also present

well adapted or better adapted than other mosquito vectors
4 better adapted to complete life cycle/lays eggs in large variety of
 habitats/can withstand (more) polluted waters/larvae able to eat a wide
 variety of food;
5 short(er) life cycle/long(er) breeding season; A reproduces quickly
6 withstands, dry/drier, conditions/larger temperature variation/
 higher temperatures; I better adapted to climate
7 (more) resistant to, pesticides/insecticides; R immune

feeding
8 feed mainly/AW, on human blood;
9 takes, large(r)/more frequent, blood meals;
10 takes blood meal/bites/feeds, at night (when humans less able to
 notice);
11 mouthparts, well adapted for feeding on humans/can penetrate
 clothing;

as host for Plasmodium
12 good host for/very susceptible to, parasite/Plasmodium;

AVP; e.g. able to migrate to find hosts
quick to adapt to changing human habitation
better adapted to find (human) hosts
females live for longer
A. gambiae present in Africa, where, malaria control is difficult

[d] (i) large egret/yellow winged bat/eastern green mamba; [1]

(ii) 1 insufficient numbers of bats;
2 (so) not enough energy/energy available is low (to sustain needs);
3 energy loss at each level / progressively less energy
 transferred/inefficient/transfer of energy/AW;
4 example of energy loss from bat intake; in context of mamba feeding
 e.g. inedible parts/named indigestible parts/faeces/egestion
5 example of energy loss in food chain (to bat);
 e.g. death but not eaten
 excretion
 respiration
 heat loss, in movement/digestion
allow either point below if not awarded for mp 4
inedible parts/named examples
indigestible parts/faeces/egestion [max 3]
(iii) use biological control;
introduce/increase numbers of/AW, predators (of mosquito) /named e.g.
guppy/dragonfly/yellow winged bats;
to eat/consume/reduce number of, mosquitoes;
grow crops other than sweet potato/grow less sweet potato;
A do not grow sweet potato
numbers (of mosquito) reduce so fewer, act as vectors/feed on humans;
AVP; e.g. use genetic modification to produce sweet potato crop with toxin
against mosquito [max 2]

(e) nectar/nectaries/flowers/phloem (tissue) / (phloem) sap/sieve tubes/
vascular bundles/stem/leaf;
I ref. to, source/sink
R if includes, roots/‘potatoes’/xylem, for this mp only,
then for mp 2 allow explanation for the other stated part that is correct

explanation;
e.g. fluid feeders/ piercing and sucking mouthparts/proboscis for feeding
(fluids provide) source of carbon/energy/sugar/sucrose
A glucose/fructose
(fluids provide) source of, nitrogen/amino acids
near to, vascular bundles/phloem for, stem/leaf
for phloem sap/AW for vascular bundles [2]

[Total: 18]

6 (a) 1 idea of different distances; must be comparative
e.g. atria pump blood shorter distance ora
atria pump blood a short distance and ventricles pump blood a long distance
atria pump blood to ventricles and ventricles pump blood to, (other parts of)
body

2 (so) resistance to overcome by atria is low(er)
or
(so) ventricles need to overcome, great(er) /AW, resistance ;

3 (so) atria generates lower pressure
ventricles generate higher pressure ; AW
A force for pressure
R ventricles withstand high pressures
A low pressure / high pressure if mp1 or mp2 gained [max 2]

(b) septum ; R atrioventricular septum [1]
(c) (i) I ref. to xylem/transpiration stream

transpiration
involves only water (molecules);
involves, evaporation/diffusion/evaporation and diffusion;
I ref. to evaporating surface
movement out to (external) environment/loss from leaves; A aerial parts
affected by, external factors/humidity/light/wind speed/temperature;
occurs in one direction/from air spaces through stomata;
ATP not required;

translocation
involves, assimilates/photosynthates/sucrose/other named; A cell sap
involves (hydrostatic) pressure gradients; A mass flow
involves transport in phloem (sieve tubes);
flow from source to sink / AW;
ATP used (to enable loading of sucrose into phloem sieve tube); A active [max 1]

(ii) both involve, transport/movement of substances; R if transport in
xylem stated
both involve water;
both require energy; (transpiration – evaporation requires heat energy and
translocation – hydrogen ions pumping out of companion cells) [max 1]

[Total: 5]