
- ¹· *A* and *B* are two points on a line of greatest slope of a plane inclined at 45° to the horizontal and AB = 2 m. A particle *P* of mass 0.4 kg is projected from *A* towards *B* with speed 5 m s⁻¹. The coefficient of friction between the plane and *P* is 0.2.
 - i. Given that the level of *A* is above the level of *B*, calculate the speed of *P* when it passes through the point *B*, and the time taken to travel from *A* to *B*.
- [7]

ii. Given instead that the level of A is below the level of B,a. show that P does not reach B,

- [3]
- b. calculate the difference in the momentum of *P* for the two occasions when it is at *A*.

A and *B* are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at 30° to the horizontal. *M* is the mid-point of *AB*. Two particles *P* and *Q*, joined by a taut light inextensible string, are placed on the plane at *A* and *M* respectively. The particles are simultaneously projected with speed 0.6 ms⁻¹ down the line of greatest slope (see diagram). The particles move down the plane with acceleration 0.9 ms⁻². At the instant 2 s after projection, *P* is at *M* and *Q* is at *B*. The particle *Q* subsequently remains at rest at *B*.

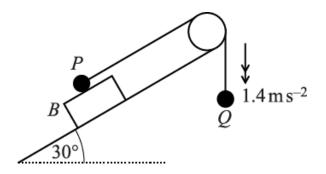
i. Find the distance *AB*.

[3]

[4]

The plane is rough between A and M, but smooth between M and B.

ii. Calculate the speed of *P* when it reaches *B*.


Phas mass 0.4 kg and Q has mass 0.3 kg.

- iii. By considering the motion of *Q*, calculate the tension in the string while both particles are moving down the plane.
- iv. Calculate the coefficient of friction between *P* and the plane between *A* and *M*.

[6]

[3]

Friction

A block *B* is placed on a plane inclined at 30° to the horizontal. A particle *P* of mass 0.6 kg is placed on the upper surface of *B*. The particle *P* is attached to one end of a light inextensible string which passes over a smooth pulley fixed to the top of the plane. A particle *Q* of mass 0.5 kg is attached to the other end of the string. The portion of the string attached to *P* is parallel to a line of greatest slope of the plane, the portion of the string attached to *Q* is vertical and the string is taut. The particles are released from rest and start to move with acceleration 1.4 m s⁻² (see diagram). It is given that *B* is in equilibrium while *P* moves on its upper surface.

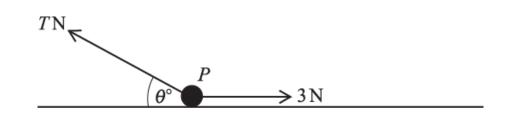
i. Find the tension in the string while *P* and *B* are in contact.

[3]

[5]

- ii. Calculate the coefficient of friction between *P* and *B*.
- iii. Given that the weight of *B* is 7 N, calculate the set of possible values of the coefficient of friction between *B* and the plane.

[7]

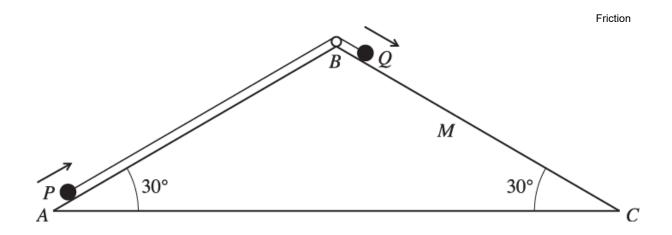

Friction

[2]

[4]

- 4. A particle P of weight 8 N rests on a horizontal surface. A horizontal force of magnitude 3 N acts on P, and P is in limiting equilibrium.
 - i. Calculate the coefficient of friction between *P* and the surface.
 - ii. Find the magnitude and direction of the contact force exerted by the surface on *P*.

iii.


The initial 3 N force continues to act on P in its original direction. An additional force of magnitude TN, acting in the same vertical plane as the 3 N force, is now applied to P at an angle of θ above the horizontal (see diagram). P is again in limiting equilibrium.

a. Given that $\theta = 0$, find *T*.

b. Given instead that $\theta = 30$, calculate *T*.

[2]

[6]

AB and BC are lines of greatest slope on a fixed triangular prism, and M is the mid-point of BC. AB and BC are inclined at 30° to the horizontal. The surface of the prism is smooth between A and B, and between B and M. Between M and C the surface of the prism is rough. A small smooth pulley is fixed to the prism at B. A light inextensible string passes over the pulley. Particle P of mass 0.3 kg is fixed to one end of the string, and is placed at A. Particle Q of mass 0.4 kg is fixed to the other end of the string and is placed next to the pulley on BC. The particles are released from rest with the string taut. P begins to move towards the pulley, and Q begins to move towards M (see diagram).

i. Show that the initial acceleration of the particles is 0.7 m s^{-2} , and find the tension in the string.

The particle Q reaches M1.8 s after being released from rest.

ii. Find the speed of the particles when Q reaches M.

After Q passes through M, the string remains taut and the particles decelerate uniformly. Q comes to rest between M and C 1.4 s after passing through M.

iii. Find the deceleration of the particles while Q is moving from M towards C.

[2]

[5]

[2]

iv.

a. By considering the motion of *P*, find the tension in the string while *Q* is moving from *M* towards *C*.

[3]

b. Calculate the magnitude of the frictional force which acts on Q while it is moving from M towards C.

[3]

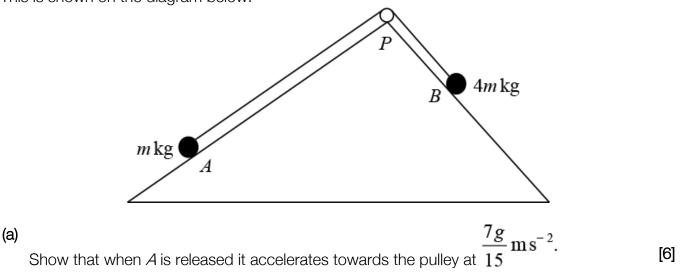
6. A particle P of mass 0.4 kg is at rest on a horizontal surface. The coefficient of friction between P and the surface is 0.2. A force of magnitude 1.2 N acting at an angle of θ above the horizontal is then applied to P. Find the acceleration of P in each of the following cases:

i.	$\Theta = 0;$	[2]
ii.	$\theta = 20;$	[3]
		[3]
iii.	$\theta = 70;$	
iv.	$\theta = 90.$	[3]
		[2]

- 7. Three forces act on a particle. The first force has magnitude PN and acts horizontally due east. The second force has magnitude 5 N and acts horizontally due west. The third force has magnitude 2PN and acts vertically upwards. The resultant of these three forces has magnitude 25 N.
 - i. Calculate *P* and the angle between the resultant and the vertical.

The particle has mass 3 kg and rests on a rough horizontal table. The coefficient of friction between the particle and the table is 0.15.

ii. Find the acceleration of the particle, and state the direction in which it moves.


[5]

[4]

- 8. A body of mass 20 kg is on a rough plane inclined at angle α to the horizontal. The body is held at rest on the plane by the action of a force of magnitude *P*N acting up the plane in a direction parallel to a line of greatest slope of the plane. The coefficient of friction between the body and the plane is μ .
 - (a) When P = 100, the body is on the point of sliding down the plane. Show that $g \sin \alpha = g \mu \cos \alpha + 5$.
 - (b) When *P* is increased to 150, the body is on the point of sliding up the plane. Using this and your answer to part (a), find an expression for *a* in terms of *g*.[3]

9. Particle *A*, of mass *m* kg, lies on the plane /71 inclined at an angle of $\tan^{-1} \frac{3}{4}$ to the horizontal. Particle *B*, of 4*m* kg, lies on the plane /72 inclined at an angle of $\tan^{-1} \frac{4}{3}$ to the horizontal. The particles are attached to the ends of a light inextensible string which passes over a smooth pulley at *P*. The coefficient of friction between particle *A* and /71 is image and plane /72 is smooth. Particle *A* is initially held at rest such that the string is taut and lies in a line of greatest slope of each plane.

This is shown on the diagram below.

(b) Assuming that A does not reach the pulley, show that it has moved a distance of $\frac{1}{4}$ m when [2] its speed is $\sqrt{\frac{7g}{30}} \,\mathrm{m \, s^{-1}}$.

11.

Friction through a line of greatest slope. It is given that H is the greatest value for which P remains in equilibrium.

(a) Indicate on a diagram the forces acting on P.

(b) Show that
$$H = \frac{11}{2}W$$
. [5]

The horizontal force acting on *P* is now removed.

(c) Find the acceleration of *P* in terms of *g*.

A particle P of mass 0.4 kg is attached to one end of a light inextensible string. The string passes over a small smooth fixed pulley, and a particle Q of mass 0.1 kg is attached to the other end of the string. *P* rests in limiting equilibrium on a horizontal surface which is 0.4 m below the pulley, with the string taut and in the same vertical plane as *P*, *Q* and the pulley. *P* is 0.5 m from the pulley (see diagram).

() Calculate the coefficient of friction and the magnitude of the contact force exerted on P [7] by the surface.

Q is now moved to the position on the surface below the pulley such that the portion of the string attached to *Q* is vertical. *P* hangs freely below the pulley and the portion of the string attached to *P* is vertical. Both particles are at rest when *Q* is released.

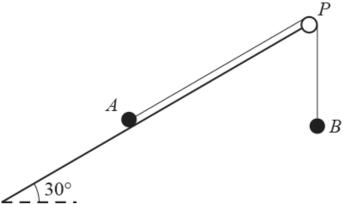
(ii) Find the acceleration of the particles and the tension in the string while *P* is descending. [5]

P strikes the surface and remains at rest. *Q* comes to instantaneous rest immediately before reaching the pulley.

(iii) Find the length of the string.

12. One end of a light inextensible string is attached to a particle *A* of mass *m* kg. The other end of the string is attached to a second particle *B* of mass λm kg, where λ is a constant. Particle *A* is in contact with a rough plane inclined at 30° to the horizontal. The string is taut and passes over a small smooth pulley *P* at the top of the plane. The part of the string from *A* to *P* is

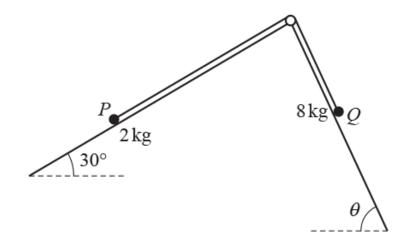
Q


0.5 m

 $0.4 \, {\rm m}$

[4]

[1]



The coefficient of friction between A and the plane is μ .

(a) It is given that *A* is on the point of moving down the plane.

(i) Find the exact value of
$$\mu$$
 when $\lambda = \frac{1}{4}$. [7]

- (ii) Show that the value of λ must be less than $\frac{1}{2}$. [2]
- (b) Given instead that $\lambda = 2$ and that the acceleration of A is $\frac{1}{4}gms^{-2}$, find the exact [5] value of μ .

Two particles P and Q, with masses 2 kg and 8 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. Plane Π_1 is inclined at an angle of 30° to the horizontal and plane Π_2 is inclined at an angle of θ to the horizontal. Particle P is on Π_1 and Q is on Π_2 with the string taut (see diagram).

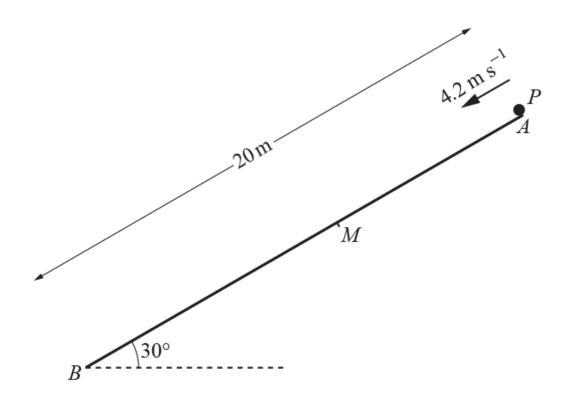
 Π_1 is rough and the coefficient of friction between P and Π_1 is $\overline{3}$

 Π_2 is smooth.

The particles are released from rest and P begins to move towards the pulley with an acceleration of

 $g\cos\theta$ m s⁻².

(a) Show that θ satisfies the equation


$$4 \sin \theta - 5 \cos \theta = 1.$$

(b) By expressing $4 \sin \theta - 5 \cos \theta$ in the form $R \sin (\theta - a)$, where R > 0 and $0 > a > 90^\circ$, find, correct to 3 significant figures, the tension in the string.

[7]

[8]

Friction

A and B are points at the upper and lower ends, respectively, of a line of greatest slope on a plane inclined at 30° to the horizontal. The distance AB is 20 m. M is a point on the plane between A and B. The surface of the plane is smooth between A and M, and rough between M and B.

A particle *P* is projected with speed 4.2ms⁻¹ from *A* down the line of greatest slope (see diagram). *P* moves down the plane and reaches *B* with speed 12.6ms⁻¹. The coefficient of $\sqrt{3}$

friction between P and the rough part of the plane is $\overline{6}$.

- (a) Find the distance AM.
- (b) Find the angle between the contact force and the downward direction of the line of greatest slope when *P* is in motion between *M* and *B*.

END OF QUESTION paper

[8]

[3]

Mark scheme

Ques	Question		Answer/Indicative content	Marks	Part marks and guidance	
1		i	$Fr = 0.2 \times 0.4gcos45$	M1	Fr = 0.554(37)	
		i	0.4 <i>a</i> = 0.4 <i>g</i> sin45 - 0.554(37) (= 2.21748)	M1	N2L, their Fr value and cmpt wt, opposite signs	
		i	<i>a</i> = 5.54(37)	A1	May be implied	
		i	$v^2 = 5^2 + 2 \times 5.54 \times 2$	M1	$v^2 = u^2 + 2as$, <i>a</i> is not 0.2 <i>g</i> . 0 < <i>a</i> < <i>g</i> . Consistent signs	
		i	$v = 6.87 \text{ m s}^{-1}$	A1		
		i	6.87 = 5 + 5.54t	M1	2 = 5 <i>t</i> + 5.54 <i>t</i> /2, <i>a</i> is not 0.2 <i>g</i> . 0 < <i>a</i> < <i>g</i>	
					Examiner's Comments	
		i	<i>t</i> = 0.337 s	A1	This was well answered in the main, but candidates who found that P had an acceleration down the plane greater than g did not look for an error in their calculation. There were a significant number of scripts in which only one of v or t were found.	
		ii	(a) +/-0.4 a = -0.4 g sin45 - 0.55437 (= 3.3262)	M1	N2L, Fr and cmpt wt same sign (accept +ve)	
		ii	<i>a</i> = +/-8.31(557)	A1	Accept +ve value	
		ii	$0^2 = 5^2 - 2 \times 8.32 \times S$		$5^2 = 2 \times 8.32 \times s$, <i>a</i> is not g or 0.2 <i>g</i> . Consistent signs.	
		ii	s = 1.5(0) (so does not reach B)	A1	CSO	
		ii	OR			
		ii	$v^2 = 5^2 - 2 \times 8.32 \times 2$			
		ii	$v^2 = -ve (-8.28)$ so does not reach B	A1	Some comment on impossibility Examiner's Comments	

				There was a noticeable reluctance on the part of candidates to create a Newton's Second Law equation in which all the force terms were negative. This lead to the sly insertion of a minus sign into a calculation of the distance travelled by <i>P</i> before coming to rest.	Friction
	ii	(b) $v^2 = 2 \times 5.54(37) \times 1.5$	M1*	No A1 to be given for $s = 1.5$ (if last A1 not given in iia), <i>a</i> is not <i>g</i> or 0.2 <i>g</i> or their <i>a</i> in 7iia allow $a > g$	
	ii	<i>v</i> = +/- 4.08	A1		
	ii	Momentum change = $+/-0.4(4.08 + 5)$	D*M1	Must be a sum of 5 and a speed meaningfully less than 5	
				Examiner's Comments	
	ii	Change = $+/-3.63 \text{ kg m s}^{-1}$	A1	This proved too demanding for most candidates, hinging as it did on using the acceleration found in (i), and a distance calculated in (ii)(a). Some candidates who did this introductory work correctly then overlooked the vector nature of momentum. A significant minority used either the velocity calculated in (i) or the acceleration found in (ii)(a) in this part.	
		Total	14		
2	i	$s = 0.6 \times 2 + 0.9 \times 2^2/2$	M1	Uses $s = ut + at^2$, $u \neq 0$, $a \neq g$ or gCorS30	
	i	<i>s</i> = 3	A1		
	i	<i>AB</i> = 6 m	A1	Examiner's Comments Many good solutions were seen for three of the four parts of this question.	
	ii	$V_{M} = 0.6 + 0.9 \times 2 \ OR$		2.4	Award if found in (i) and used in (ii)
	ii	$V_{M}^{2} = 0.6^{2} + 2 \times 0.9 \times 3$	B1	5.76	
	ii	a = g sin 30	B1	4.9	

ii	$V_{E}^2 = 2.4^2 + 2(9.8\sin 30) \times 3$	M1	Uses $v^2 = u^2 + 2as$, $u \neq 0$ or 0.6, $a \neq g$ or 0.9, $s \neq AB(I)$	If AB (i) = 3, allow its use for final M1A1
11	$V_B = 5.93 \text{ ms}^{-1}$	A1	Accept 5.9 Examiner's Comments It was part (ii) which presented the greatest challenge. The analysis of the motion of <i>P</i> rarely reflected its having two different accelerations, 0.9 m s ⁻² before <i>Q</i> reaches <i>B</i> , but 4.9 m s ⁻² subsequently.	
111	$0.3 \times 0.9 = 0.3$ gsin $30 - T$	M1 A1	N2L, 0.3 × 0.9 = +/- (0.3gCorS30 - 7)	a = 0.9 essential, $m = 0.3$ but if 0.4 used in (iii) AND 0.3 used in (iv), treat as a single mis-read
111	<i>T</i> = 1.2 N	A1	Examiner's Comments It was pleasing that the correct forces were used in the Newton's Second Law equations in (iii) and (iv). Perhaps it was coincidence, but candidates who drew clear diagrams and included the forces and accelerations scored particularly well. A common error among candidates who left out a diagram was to have 0.6 as an acceleration.	
iv		M1*	N2L, 3 forces inc +/- (0. 4 <i>g</i> CorS30 + 7)	<i>a</i> = 0.9 or value used in (iii), <i>m</i> = 0.4
iv	$0.4 \times 0.9 = 0.4gsin30 + 1.2 - Fr$	A1ft	ft cv(刀 in (iii)	but if 0.4 used in (iii) AND 0.3 used in (iv), treat as a single mis- read
iv	<i>Fr</i> = 2.8	A1	May be shown by mu calculation	
iv	$R = 0.4g\cos 30$	B1	May be implied, 3.39(48)	

	iv	μ=2.8/3.39	D*M1	2.8 = 3.39(48) μ , both forces positive	Friction Awarded only if M1 forN2L equation
				Accept 0.82, not 0.83 or 0.826	
				Examiner's Comments	
	iv	μ=0.825	A1	It was pleasing that the correct forces were used in the Newton's Second Law equations in (iii) and (iv). Perhaps it was coincidence, but candidates who drew clear diagrams and included the forces and accelerations scored particularly well. A common error among candidates who left out a diagram was to have 0.6 as an acceleration.	
		Total	16		
3	i	$0.5g - T = \pm 0.5 \times 1.4$	M1	N2L for Q, difference of 2 force terms Examiner's Comments Was routine, though some solutions involved the mass of <i>P</i> and were given	
				no credit.	
	i	$0.5g - T = 0.5 \times 1.4$	A1		
	i	<i>T</i> = 4.2 N	A1		
	ii	$4.2 - F - 0.6gsin 30 = 0.6 \times 1.4 OR$ $4.2 - \mu R - 0.6gsin 30 = 0.6 \times 1.4$	M1	N2L for P , 3 forces including a component of weight of P and cv(4.2)	
	ii	Friction (= $4.2 - 0.6gsin 30 - 0.6 \times 1.4$) = 0.42	A1	May be implied	
	ii	Reaction = 0.6gcos30	B1	May be implied	
	ii	$0.42 = 0.6 \text{gcos} 30 \mu \text{ OR } \mu = 0.42 / 0.6 \text{gcos} 30$	M1	$F = \mu R$, R a component of weight of P and F has been found using a component of the weight of P. Tolerate F -ve and $ $ -veF $ $.	
	ii	$\mu = 0.0825$	A1	Accept 0.082, not 0.083. Examiner's Comments	

				Friction
			The best candidates were able to answer correctly. The main error was the omission of one of the four terms from the Newton's Second Law equation for <i>P</i> .	
iii	$R = (0.6g + 7) \cos 30$	M1	Includes weight cmpts of P and B , allow $7g$	
iii	<i>R</i> = 11.2	A1	11.154 May be implied	
iii	Fr = 7sin30 - 0.42	M1*	Wt cmpt B (allow 7 g) – Fr(ii) must be difference.	
iii	Fr = 3.08	A1	May be implied.	
iii	μ = 3.08/11.2	D*M1	Both quantities +ve, F and R both from 2 term equations	
iii	μ = 0.276	A1	Value of μ , accept 0.28, disregard inequality sign	
			ft cv (μ found in (iii)) direction of greater than or equal to sign; isw any work relating to an upper limit for μ	
			Examiner's Comments	
	µ≥ 0.276	B1 ft	Involved many candidates in more work than was necessary, as most tried to find both an upper and a lower bound for μ . The part of the solution best attempted was the normal component of the force between <i>B</i> and the plane, and the least successful was the magnitude of the frictional force between the two. That a component of the weight of <i>P</i> is included in the former but not the latter was the major difficulty.	
			Some scripts offer a variety of approaches, and it seems that many candidates believe that a "range" must have upper and lower bounds. Some additional solutions are inspired by <i>P</i> having left the surface. Give credit for the single attempt which addresses the correct scenario, whether it is presented first or second. The B1 ft mark is assigned or withheld for the correct inequality sign attached to the mu value which has been marked. If in doubt about which of two alternatives to mark, please contact your team leader.	

		Total	15		Friction
4	i	$3 = 8\mu$	M1	Uses $F = \mu R$, Allow <i>R</i> is 8 or 8 <i>g</i> , <i>Fr</i> = 3 only	
				3/8 (fraction), not 3÷8 (division)	
	i	$\mu = 0.375$	A1	Examiner's Comments	
				This part was invariably correct.	
	ii	$C^2 = 3^2 + 8^2$	M1	Uses Pythagoras with 3 and 8 or 8 <i>g</i>	
	ii	<i>C</i> = 8.54 N	A1	Accept 8.5 or √73	
	ii	$\tan\theta = 3/8 \text{ or } \tan\theta = 8/3$	M1	Uses tan with 3 and 8 or 8 <i>g</i>	Or CorS with answer for ${\cal C}$
				Accept 21 or 69, direction clear by words or diagram.	
				Examiner's Comments	
	ii	θ = 20.6° with vertical or 69.4° with horizontal	A1	This part was done satisfactorily by candidates who knew the term "contact force" mentioned in the specification. The valid solutions offered had only one common weakness, the specification of the direction of the force. An angle without a reference line or diagram is not specific. Many candidates gave their answer as a bearing, even though the contact force lies in a vertical plane. Too often, candidates' answers were "8 N" and "vertical".	isw work after correct angle magnitude found
	iii	(a) <i>T</i> (cos0) − 3 = +/−3	M1	$7(\cos 0) - 3 = 0$ is M0	Tcos0 – 3 = –3 assumes Fr direction has
	iii	<i>T</i> =6		Answer alone is sufficient for M1A1	not changed
	iii	(b) $R = +/-(8 - T \times \text{SorC30})$	M1	Accept 8 g with cmpt T	(This is required also in the SC case)
	iii	$R = 8 - T \sin 30$	A1	oe	

	iii	$Fr = +/- (T \times \text{CorS30} - 3)$	M1	Accept 3 with cmpt 7, not $T \times \text{CorS30+/-3} = 0$	Friction SC Does not allow for change in direction of Friction
	iii	<i>Fr</i> = <i>T</i> cos30 – 3	A1	oe	<i>Fr</i> = 3 – <i>T</i> cos30 A1
	iii	0.375 = (<i>T</i> cos30 - 3) / (8 - <i>T</i> sin30)	M1	Accept use of μ from (i). For forming an equation in \mathcal{T} alone.	0.375 = (3–7cos30) / (8 – 7sin30) M1
	iii	<i>T</i> = 5.70	A1		<i>T</i> =0 A0
	iii	OR Alternative for last 4 marks			SC (Alternative)
	iii	Fr = 0.375(8 - 7sin30)		Accept use of μ from (i).	<i>Fr</i> = 0.375(8 – <i>T</i> sin30)
	iii	$Fr = +/- (T \times \text{CorS30} - 3)$	M1		$Fr = +/-$ ($T \times CorS30 - 3$) M1
	iii	<i>Fr</i> = <i>T</i> cos30 – 3	A1	oe	<i>Fr</i> = 3- <i>T</i> cos30 A1
	iii	0.375(8 – <i>T</i> sin30) = <i>T</i> cos30 – 3	M1	For forming an equation in \mathcal{T} alone.	0.375(8–7sin30) = (3–7cos30) M1
		<i>T</i> = 5.70	A1	Examiner's Comments The initial situation was extended by the introduction of an additional force, pulling towards "the left". Very many solutions implied that this force meant the particle was still on the verge of moving to "the right". Solutions based on this notion led to candidates finding $T = 0$ after having equations which erred only in the sign of the frictional force. A simpler common misunderstanding was that the horizontal effect of T was to eliminate friction.	<i>T</i> = 0 A0
		Total	14		
5	i	T - 0.3gsin30 = 0.3a OR 0.4gsin30 - $T = 0.4a$	B1	Either correct N2L for one particle May be awarded later in (i)	Putting $a = 0.7$ into correct equation for a single particle and working out <i>T</i> correctly gets B1M0A0M1A1.

i	0.4gsin30 - 0.3gsin30 = 0.7a	M1	Allow combined approach as "method", must be components of weight, allow <i>mgl</i> cos / sin)30	Friction Consult TL if this is done for both particles.
i	$a = 0.7 \text{ m s}^{-2}$ AG	A1		
i	$T = 0.3gsin30 + 0.3 \times 0.7$	M1	Allow 0.3 <i>g</i> (cos / sin)30. Accept cv(0.7)	May use the other equation.
			Examiner's Comments There were many fully correct answers to this question although some failed to find both the quantities required in (i). Candidates should be reminded to should that they have answered a question in full.	
i	<i>Τ</i> = 1.68 N	A1	check that they have answered a question in full. Use of the combined approach is still quite common and some credit was given if the value of a was found this way. To gain full marks a correct Newton's second law equation had to be obtained for at least one of the particles so that a could be used to find <i>T</i> . A number of candidates forgot or neglected to find <i>T</i> having found <i>a</i> .	
==	<i>V</i> = 1.8 × 0.7	M1	Accept cv(0.7)	
ï	V= 1.26 m s ⁻¹	A1	Examiner's Comments Parts (ii) and (iii) did not depend on work from (i) but blank spaces on some scripts suggest some candidates did not appreciate this. When attempted these parts were well done and most candidates scored full marks on both parts.	
iii	Dec = 1.26 /1.4	M1	Accept 1.8 × 0.7/ 1.4	cv(1.26)
			Or $a = +/-0.9$ Examiner's Comments	
iii	Dec = 0.9 m s ⁻²	A1	Parts (ii) and (iii) did not depend on work from (i) but blank spaces on some scripts suggest some candidates did not appreciate this. When attempted	

				these parts were well done and most candidates scored full marks on both parts.	Friction
	iv	(a)	M1	N2L, 2 forces including cmpt of weight	Allow <i>mg</i> (cos / sin)30
	iv	$T - 0.3gsin30 = -0.3 \times 0.9$	A1ft	cv(0.9) but signs must be consistent with the direction of motion	
	iv	7 = 1.2 (b)	A1		
	iv	$-0.4 \times 0.9 = 0.4 g \sin 30 - T - F_r$	M1	N2L, 3 forces including cmpt of weight	Allow <i>mgl</i> cos / sin)30
	iv	$-0.4 \times 0.9 = 0.4 g \sin 30 - 1.2 - F_r$	A1ft	cv(0.9) and cv(1.2) but signs must be consistent with the direction of motion	
	iv	<i>F_r</i> = 1.12 N	A1	Examiner's Comments Here it was necessary to use Newton's second law on each particle separately. In both parts the signs used needed to be consistent with the direction of motion in order to gain accuracy marks. In (a) the motion of particle P should have been used; most candidates realised this but a few used the wrong mass or had different masses on the 2 sides of the equation. In (b), to find the friction, the motion of Q should have been used but candidates who used the combined approach were also given credit. Again there were some muddles with the masses and signs but most scored well here.	
		Total	15		
6	i	$Fr = 0.2 \times 0.4g$	B1		
	i	$1.2 - 0.2 \times 0.4g = 0.4a$	M1	N2L, 2 forces	
	i	<i>a</i> = 1.04 m s ⁻²	A1	Examiner's Comments Good solutions from many candidates particularly in (i) and (ii) but (iii) and (iv) proved a challenge for some who failed to think through the mechanics of	

			the varying situations. There was some misunderstanding of the phrase 'above the horizontal' which indicated that the force was acting upwards away from the surface. Credit was given, in the parts affected, if the force was taken to be acting downwards with a small penalty applied in (iv) since this part was simplified by the misunderstanding. Part (i) was not always completed as successfully as (ii) but was generally well done.	Friction
ii	$R = 0.4g - 1.2 \sin 20$	B1		SC $R = 0.4g + 1.2 \sin 20$
ii	$1.2\cos 20 - 0.2(0.4g - 1.2\sin 20) = 0.4a$	M1	N2L, 2 forces, cmpt of 1.2 and <i>Fr</i> not <i>Fr</i> (1)	1.2cos20 - 0.2(0.4 <i>g</i> +1.2sin20) = 0.4 <i>a</i>
ii	<i>a</i> = 1.06 m s ⁻²	A1	Examiner's Comments Most candidates understood that the normal contact force and hence the friction would now change. No credit was given if the value of friction from (i) was used.	<i>a</i> = 0.654 m s ⁻² Give B1M1A1
iii	1.2cos70 - 0.2(0.4 <i>g</i> - 1.2sin70)	M1	Difference of two relevant forces, neither used earlier (or find and compare)	SC 1.2cos70 – 0.2(0.4 <i>g</i> + 1.2sin70) Mark as correct case
iii	(Total is negative,) friction not overcome by (tractive) force	A1		Only finding a negative acceleration scores maximum M1 in both cases.
iii	<i>a</i> = 0 m s ⁻²	A1	Examiner's Comments Too many simply followed the same routine application of Newton's second law used in (ii) and gave an negative value for the acceleration having failed to appreciate that the tractive force was no longer enough to overcome friction so the acceleration would be zero.	
iv	1.2 < 0.4 <i>g</i> (oe, soi)	M1	Comparison of weight and 1.2 without involving R	SC Sum of weight and 1.2

	iv	P cannot rise from table or $a = 0$ m s ⁻²	A1	Only finding a negative acceleration scores M0 Examiner's Comments The applied force was now vertical so no credit was given for work which only considered horizontal motion even if this produced the answer $a = 0$. There was a general lack of understanding that the crucial question now was whether or not the applied force was sufficient to lift the object off the table.	Friction P can't go through the table <i>or</i> a = 0 B1 only
		Total	11		
7	i	Perpendicular components of (2 <i>P</i>) and $+/-(5 - P)$	B1		
	i	$(P-5)^2 + (2P)^2 = 25^2$	M1	Uses appropriate Pythagoras	
	i	$5P^2 - 10P - 600 = 0$	M1	Attempt to solve 3 term QE "=0"	
	i	<i>P</i> = 12	A1		
	i		M1	Targets any relevant angle appropriately	
	i	$\cos\theta = (2 \times 12)/25$, $\tan\theta = (12 - 5)/2 \times 12$ etc.	A1√	ft cv(P)	
				Must be angle with vertical	
				Examiner's Comments	
	i	Angle with vertical = 16.3°	A1	A good diagram showing all forces was beneficial to those who included it. The only common error was that the squaring of the $2PN$ force when using Pythagoras theorem was written $2P^3$. Too often candidates failed to see their "invisible brackets", and obtained a quadratic equation starting $3P^2$ which would fail to give a useful answer. Several candidates found the angle the resultant makes with the horizontal at the end of part (i).	
	ii	$R = +/-(3 \times 9.8 - 2 \times 12) OR R = +/-(3 \times 9.8 - 25cos(Ans(i)))$	M1*	Bracketed terms must have opposite signs	
	ii	R = 5.4 N (may be implied)	A1√	ft 29.4 – 2 × cv(P (i)) OR 29.4 –25cos(cv(Θ (i)))	

ii	$12 - 5 - 0.15 \times 5.4 = 3a \text{ OR } 25 \text{sin}(\text{cv}(\theta(\text{i})) - 0.15 \times 5.4 = 3a)$	D*M1	N2L, cv(12) cv(5.4) should be acceptable	
ii	<i>a</i> = 2.06 m s ⁻²	A1		
11	Direction East	B1	Allow bearing (0)90° Examiner's Comments Many candidates made a reasonable attempt, but fully developed solutions were rare. Using the vertical component of the resultant to find the normal component of reaction (often ignored), and then using Newton's Second Law with the correct forces was demanding. The direction of motion was presented in many ways, but only "East" or "Bearing 090°" (using the context set in the question) were deemed acceptable.	
	Total	12		
8 a	Resolve parallel to the slope: 100 N + Friction 20g N Resolve parallel to the slope: $100 + F - 20g \sin a = 0$ (*) Resolve perpendicular to the slope and friction force is maximum: $R = 20g \cos a$ and $F = \mu R$ Substitute and obtain $20g \sin a = 20g\mu\cos a + 100$	B1(AO 2.1) M1(AO 3.3) M1(AO 3.3) E1(AO 1.1)	Any equivalent which makes clear the relationships between: OR Contact force 100 N Reaction, 100 N force, friction acting upwards, weight of 20 g N 20g A diagram is A diagram is	

			[4]	not <i>necessary</i> provided that sufficient explanation is given.		Friction
	þ	All forces shown on diagram of inclined plane Resolve parallel to the slope: $150 - F - 20g \sin \alpha = 0$ (**) From * and ** $250 - 40g \sin \alpha = 0$ $\alpha = \sin^{-1} \frac{25}{4g}$	B1(AO 3.3) M1(AO 3.4) A1(AO 1.1) [3]	Reaction, 150 N force, friction acting downwards, weight of 20 g N Eliminate μ and attempt to solve for α .	One valid step after elimination required	
		Total	7			
9	а	Resolving vertically to the plane for Particle A $R = mg \cos a = \frac{4}{5}mg$ Since A is in motion,	B1(AO1.1) B1(AO2.2a)	Obtain $\frac{4}{5}mg$		

	$_{F_{s=}} \mu R = \frac{1}{3} \left(\frac{4}{5} \right) mg = \frac{4}{15} mg$	M1(AO3.1b)	Obtain $\frac{4}{15}mg$	Friction
	Resolving horizontally to the plane for both particles:			
			Must obtain two equations in <i>T</i> and <i>a</i>	
	$T - \frac{13mg}{15} = ma$ $-T + \frac{16mg}{5} = 4ma$	A1(AO2.1) M1(AO1.1) E1(AO2.4)	Particle A: Attempt resolution as far as stating $T - Fs - mg \sin \alpha =$ ma Particle B: Attempt resolution as far as stating $-T + 4mg \sin \beta \alpha$ 4ma	
	$a = \frac{7g}{15}$	[6]	Solve their simultaneous equations to find <i>a</i> in terms of <i>g</i> . AG Solution must include clear diagrams or explanation for <i>Fs</i> and for horizontal resolutions.	
b	$\frac{7g}{30} = 2 \times \frac{7g}{15} \times s$	M1(AO 1.1)	Use $v^2 = 0^2 + 2as$	
	50 15	E1(AO2.1)		

		$s = \frac{1}{4}$	[2]	AG Must include sufficient working to justify the given answer from the constant acceleration formula		Friction
		Total	8			
10	а	H	B1(AO1.1)	Correct four forces shown; <i>F</i> could be labelled as		
		∇_W	[1]	$\mu R \text{ or } \frac{1}{2}R$		
		Resolve to plane: F+Wsina = Hcosa	M1(AO3.3)	Three terms with resolving attempted		
		Resolve perp. to plane: $R = W \cos a + H \sin a$	M1(AO3.3)	Three terms with resolving attempted	sin <i>a</i> and cos <i>a</i> may be numerical	
		$H\cos a - W\sin a = \mu(W\cos a + H\sin a)$	M1(AO3.3)	Use of $F = \mu R$; dep on first two M marks		
	b	$\frac{3}{5}H - \frac{4}{5}W = \frac{1}{2}\left(\frac{3}{5}W + \frac{4}{5}H\right)$	M1(AO2.1) A1(AO2.2a)	oe; equation in <i>H</i> and <i>W</i> only, in any form		
		$\frac{1}{5}H = \frac{11}{10}W \Longrightarrow H = \frac{11}{2}W$	M1	AG; sufficient working must be shown		
			M1			

		Alternative solution Resolve vertically: $W + F \sin a = R \cos a$ $W = \frac{3}{5}R - \frac{4}{5} \times \frac{1}{2}R = \frac{1}{5}R \Longrightarrow R = 5W$ Resolve horizontally: $H = F \cos a + R \sin a$ $H = \frac{1}{2} \times 5W \times \frac{3}{5} + 5W \times \frac{4}{5}$ Substitute $H = \frac{11}{2}W$	M1 M1 A1 [5]	Use <i>F</i> = μ <i>R</i> and obtain <i>R</i> in terms of <i>W</i> AG ; sufficient working must be shown		Friction
	с	$R = W \cos \alpha$ $W \sin \alpha - F = \frac{W}{g} a$ $W \sin \alpha - \mu W \cos \alpha = \frac{W}{g} a$ $a = \frac{1}{2} g$	B1(AO1.1) M1(AO3.3) M1(AO3.4) A1(AO1.1) [4]	For attempt at N2L to plane, with <i>F</i> in the opposite direction to that seen in (b) Using $F = \mu R$ and eliminating <i>R</i> and <i>F</i>	Trig ratios may be numerical Do not allow <i>W</i> for the mass	
		Total	10			
11	i	$\sin\theta = 0.4/0.5 \text{ or } \cos\theta = 0.3/0.5$	B1	heta is angle between string and horizontal		

		B1			Friction
	T = 0.1g (=0.98) N	M1			
	$Fr = T\cos\theta$ (= 0.588) $R = 0.4g - T\sin\theta$ (= 3.136)	M1	CorS. T, angle do not have to be numerical	If two values of T are employed, award B1 for 0.1 <i>g</i> associated with <i>Q</i> .	
	μ (= 0.588 /3.136) = 3/16 or 0.1875 $C^2 = 0.588^2 + 3.136^2$	A1 M1 A1	SorC. T, angle do not have to be numerical with 0.4 <i>g</i> 0.187 or 0.188 Must have two non- zero numerical values	<i>R</i> must be a difference of forces	
	C = 3.19 N	[7]	Examiner's Comments Part (i) was often incomplete as candid "contact force". The initial part was we who could not find a relevant angle we		
	0.4 <i>g</i> - <i>T</i> = 0.4 <i>a</i>	M1	N2L for either particle, no components	Finding <i>a</i> correctly from the combined	
ii	<i>T</i> -0.1 <i>g</i> = 0.1 <i>a</i> 0.3 <i>g</i> = 0.5 <i>a OR</i> 0.4g - 0.1g = 0.4a + 0.1a	A1 M1	Both equations correct Solves two	equation gets M1A1. Using a in an N2L equation for P or Q can get M1, and obtaining the correct value of T gets A1,	
			simultaneous	,	

	<i>a</i> = 5.88 m s ⁻²	A1	equations	hence 4 marks out of	Friction
	<i>T =</i> 1.568 N = 1.57 N	A1		5	
		[5]	Examiner's Comments In part (ii) many fully correct solutions error was to omit an answer for the te		
	P descends = x m (= (2x0.4 -)) m)				
	$v^2 = 2x5.88x$ (=11.76x)	М1	Pand Qmoving together	Eqn has two unknowns	
	$0 = v^2 - 2g(0.4-x)$ x = 0.25	M1 A1	<i>Q</i> rising alone	Eqn has two unknowns	
	String is 0.8-0.25 m long	M1			
	I = 0.55 m OR (P starts d m below pulley)	A1 [5]			
	$v^2 = 2x5.88(0.4 - d)$	М1	P and Q moving	Eqn has two	
	$v^2 = 2gd$	М1	together	unknowns	
	<i>d</i> = 0.15	A1	<i>Q</i> rising alone	Eqn has two unknowns	
	String is 0.4+0.15 m long /= 0.55 m	M1 A1			
	7 = 0.55 m				

					Examiner's Comments	Friction
					Part (iii) was challenging for most, setting up and solving two simultaneous $v^2 = u^2 + 2as$ equations being unfamiliar.	
		Total		17		
12	a	(i)	$R = mg \cos 30$ $T = \frac{1}{4}mg$ $T + F - mg \sin 30 = 0$ $F = \mu(mg \cos 30)$ $\frac{1}{4}mg + \mu\left(\frac{mg\sqrt{3}}{2}\right) - \frac{1}{2}mg = 0 \implies \mu = \dots$	B1(AO 3.3)E B1(AO 1.1)E M1(AO 3.3)E A1(AO 1.1)C M1(AO 3.3)E M1(AO 2.1)A	Resolving perpendicular to the planeResolving vertically for BResolving parallel to the plane – three terms – allow signs and sin/cos confusionUse of $F = \mu R$ Deriving equation in μ (and m and g) and attempt to solve for μ – dependent on	
				A1(AO 2.2a)A	previous M marks and second B mark	
			1	[7]		

$$\mu = \frac{\sqrt{3}}{6}$$
 Friden

$$\mu = \frac{\sqrt{3}}{6}$$
 Friden

$$\mu = \frac{\sqrt{3}}{6}$$
 The patient Correction

 The voting Genry and explaining what they over doing at each step, As monotocid the source would get each step. As monotocid the construction in the construction would would be the patient of the construction of the con

		$2mg - F - mg\sin 30 = \frac{3}{4}mg$ $2mg - \mu(mg\cos 30) - mg\sin 30 = \frac{3}{4}mg$ $\mu = \frac{\sqrt{3}}{2}$	1.1)C A1(AO 2.1)A A1(AO 2.2a)A [5]	Correct method for eliminating \mathcal{T} Friction Correct use of $\mathcal{F} = \mu \mathcal{R}$ and $\mathcal{R} = mg \cos 30$ Finite and $\mathcal{R} = mg \cos 30$ Examiner's Comments Like part (b) this part differentiated well with many candidate unaware that if the value of λ was now greater than a half then particle A would move up the plane; many candidates assumed that the motion of A was down the plane. Of those that did have the correct direction of motion most correctly applied Newton's second law to both particles separately and obtained the correct value for the coefficient of friction. Output Output Clear diagrams, with arrows showing the direction of motion and/or acceleration help to reduce the risk of sign errors when identifying the direction that any frictional force will act.
		Total	14	
13	a	$R_1 = 2g\cos 30$	B1 (AO1.1) M1 (AO3.3)	Resolve perpendicular to $/7_1$ where R_1 is the normal contact force on P $R_1 = g\sqrt{3}$
		$F = \frac{\sqrt{3}}{3} \times g\sqrt{3}$	M1 (AO3.3) A1 (AO1.1) M1 (AO3.3)	Use of $F = \mu R$ $F = g$ Applying N II parallelThe M marks for N II parallel to a plane

	$T - F - 2g \sin 30 = 2(g \cos \theta)$ $8g \sin \theta - T = 8(g \cos \theta)$ $8g \sin \theta - T = g - 2g \sin 30 = 10g \cos \theta$ $8\sin \theta - 1 - 1 = 10 \cos \theta \Rightarrow 4 \sin \theta = 1$	A1 (AO1.1) M1 (AO3.4) A1 (AO2.2a) [8]	to the plane for <i>P</i> Allow with <i>a</i> Applying N II parallel to the plane for <i>Q</i> Allow with <i>a</i> Combining simultaneous equations to eliminate <i>T</i> (dependent on all previous M marks) AG	require the correct number of terms and the weight resolved; allow sign errors and sin/cos confusion	Friction
b	$R = \sqrt{41}$ $R \cos a = 4, R \sin a = 5$ $\tan \alpha = \frac{5}{4} \Longrightarrow \alpha = 51.3$ $\theta - \alpha = \sin^{-1}\left(\frac{1}{R}\right)$ $\theta = 60.3$	B1 (A01.1) M1 (A01.1) A1 (A01.1) M1 (A01.1) A1 (A01.1) M1 (A03.4) A1	Forming two equations in R and a (allow sign errors or sin/cos confusion) Correct method for finding θ If θ is obtained by calculator with none of the above marks	 6.403124 This mark is implied if correct <i>a</i> seen 51.340191 <i>θ</i>-51.34 = 8.9848 60.325068 	

		$T = 8g \sin 60.3 - 8g \cos 60.3$ T = 29.3N	(AO2.2a) [7]	earned, allow SC B2 for 60.3 or better Using their θ to evaluate T	29.303539	Friction
		Total	15			
14	a	Acceleration component = $g \sin 30^{\circ}$ $v_M^2 = 4.2^2 + 2(g \sin 30^{\circ})x$ $R = mg \cos 30^{\circ}$ $F = \frac{\sqrt{3}}{6}mg \cos 30^{\circ}$	B1 (AO 1.2) M1 (AO 3.3) B1 (AO 3.3) M1 (AO 3.4) M1* (AO 3.3)	Correct acceleration component seen Use of $v^2 = u^2 + 2as$ for the motion from <i>A</i> to <i>M</i> Resolving perpendicular to the plane Use of <i>F</i> = μR for the	<i>x</i> is the distance AM and v_M is the speed of P at M	
		$mg\sin 30^\circ - F = ma$ $12.6^2 = v_M^2 + 2g\left(\sin 30^\circ - \frac{\sqrt{3}}{6}\cos 30^\circ\right)(20 - x)$	M1dep* (AO 3.4) M1 (AO 2.1)	motion of <i>P</i> between <i>M</i> and <i>B</i> Use of Newton's 2nd Law for the motion of <i>P</i> between <i>M</i> and <i>B</i> Correct use of $v^2 = u^2 + 2as$ for the motion from <i>M</i> to <i>B</i> with their <i>a</i> and	<i>R</i> is the normal contact force between <i>P</i> and the plane, <i>m</i> is the mass of <i>P</i>	

	$12.6^{2} = 4.2^{2} + 2(g \sin 30^{\circ})x$ $+ 2g(20 - x)\left(\sin 30^{\circ} - \frac{\sqrt{3}}{6}\cos 30^{\circ}\right)$ $x = 8.8 \text{ so the distance } AM \text{ is } 8.8\text{m}$	A1 (AO 2.2a)	correct <i>s</i> Substitute their expression for v_M to obtain an equation in <i>x</i> only		Friction
		[8]	BC		
	$\tan \alpha = \frac{R}{F} = \frac{mg\cos 30^{\circ}}{\frac{\sqrt{3}}{6}mg\cos 30^{\circ}}$	M1* (AO 3.1b)	Equates ratio of contact forces to tan		
b	angle = $180^\circ - a$ = 106.1°	M1dep* (AO 1.1) M1 (AO 1.1) [3]	Correct answer (to at least 3 sf)	106.102 113	
	Total	11			