

GCSE (9–1)

Combined Science B (Twenty First Century Science)

F

J260/02: Chemistry (Foundation Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning						
V	Correct response						
×	Incorrect response						
	Omission mark						
BOD	Benefit of doubt given						
CON	Contradiction						
RE	Rounding error						
SF	Error in number of significant figures						
ECF	Error carried forward						
L1	Level 1						
L2	Level 2						
L3	Level 3						
NBOD	Benefit of doubt not given						
SEEN	Noted but no credit given						
I	Ignore						

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

J260/02

Mark Scheme

June 2019

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Combined Science B:

monstrate knowledge and understanding of scientific ideas and scientific techniques and procedures. monstrate knowledge and understanding of scientific ideas. monstrate knowledge and understanding of scientific techniques and procedures. ply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures. ply knowledge and understanding of scientific ideas.
monstrate knowledge and understanding of scientific techniques and procedures. ply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures. ply knowledge and understanding of scientific ideas.
ply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
ply knowledge and understanding of scientific ideas.
ply knowledge and understanding of scientific enquiry, techniques and procedures.
alyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve perimental procedures.
alyse information and ideas to interpret and evaluate.
alyse information and ideas to interpret.
alyse information and ideas to evaluate.
alyse information and ideas to make judgements and draw conclusions.
alyse information and ideas to make judgements.
alyse information and ideas to draw conclusions.
alyse information and ideas to develop and improve experimental procedures.
alyse information and ideas to develop experimental procedures.
alyse information and ideas to improve experimental procedures.

Q	Question		Answer			Marks	AO element	Guidance	
1	(a)			True	False	2	1.1	4 correct = two marks 3 or 2 correct = one mark	
			They all have 2 electrons in their first shell.	✓				1 or 0 correct = zero marks	
			They all have 1 electron in their outer shell.	\checkmark					
			They all have the same number of electrons		~				
			They all have the same number of electron shells		~				
	(b)					2	1.1		
			They have a small number of electrons in the shell.	ir outer	~				
			They do not contain electrons.						
			They lose electrons easily.		✓				
			They form covalent bonds by gaining electrons.						
	(c)	(i)	 (i) Faster fizzing down the group/potassium catches fire ✓ more reactive down the group ✓ 		/	2	3.1a	IGNORE references to energy	
								ALLOW 'potassium is most reactive / lithium is least reactive'	
		(ii)	hydrogen	hydrogen 🗸		2	1.2	DO NOT ALLOW if more than one line drawn from a box on the left hand side.	
			Fizzing oxygen						
			water						
			Indicator hydroxide ior	าร 🗸	/				

J260/02

June 2019

C	Questi	ion	Answer		AO element	Guidance	
2	(a)		heat ✓ increases ✓ water ✓ evaporate ✓	3	1.1	4 correct = three marks 3 correct = two marks 2 correct = one mark 1 or 0 correct = zero marks	
	(b)	(i)	(B) F A C D (E) F before A \checkmark A before C \checkmark C before D \checkmark	3	2.2		
		(ii)	heat until crystallisation point/partially evaporate water ✓ leave to cool/ leave to crystallise/leave until crystals form ✓	2	3.3a	ALLOW heat more gently/ heat slowly/leave to stand on a window ledge/leave to stand overnight/ use a smaller flame. DO NOT ALLOW heat to dryness.	
		(iii)	8.4(g) ✓	1	2.1		
		(iv)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 84 award 2 marks (8.4 ÷ 10) × 100 ✓ 84 ✓	2	2.2	ALLOW ECF from 2(b)(iii)	

	Question		Answer	Marks	AO element	Guidance
3	(a)		Steel (iron alloy) AND aluminium (alloy) ✓	1	1.1	Answers can be in either order
	(b)		composite ✓	1	1.1	
	(c)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.5 (g/cm ³) award 2 marks (12.0 ÷ 8.0) ✓	2	2.2	
			$= 1.5 (g/cm^3) $			

Question	Answer		AO element	Guidance	
(d)*	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Gives an advantage AND disadvantage for steel and aluminium AND Chooses graphite as the most suitable material to use with a reasoned explanation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Gives an advantage AND disadvantage of two of the materials AND chooses graphite as the most suitable material to use. OR Comments on all the materials AND chooses graphite as the most suitable material to use. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Gives an advantage AND disadvantage of one of the materials. OR Comments on most of the materials. OR Chooses graphite with a simple reason There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit. 	6	5x3.1b 1x3.2a	 AO3.1b – Analyse information and ideas to evaluate data to identify which material is the most suitable. Advantages steel is the stiffest steel is second strongest aluminium less dense than steel graphite is strongest graphite is less dense graphite is less stiff than steel Disadvantages aluminium least stiff steel is heavy aluminium heavier than graphite Uses data from the table to support their answer. AO3.2a – Analyse information and ideas to make a judgement and choose the most suitable material. Chooses graphite, supported by reasoning identified above IGNORE references to PVC	

8

G	Questi	ion	Answer	Marks	AO element	Guidance
4	(a)		magnesium chloride \checkmark Mg AND H ₂ \checkmark Correctly balances the equation ie 2(HCl) \checkmark	3	2.2	ALLOW correct multiples. DO NOT ALLOW ECF - Marking point 3 is dependent upon correct formulae in marking point 2
	(b)		gas syringe ✓	1	1.2	
	(c)	(i)	No reaction is happening.The reaction is at its fastest✓The reaction is speeding up.The reaction is at constant rate	1	1.2	
		(ii)	The reaction has stopped.✓The reaction is at its fastest.The reaction is getting faster.The reaction is at constant rate.	1	2.2	
		(iii)	30 (s) ✓	1	2.2	ALLOW any value from 25 – 30(s)
		(iv)	34(cm ³) ✓	1	2.2	

C	Questi	ion	Answer	Marks	AO element	Guidance
5	(a)	(i)	The mass of zinc oxide increasesThe zinc oxide reacts with the air.Zinc oxide loses energy.Zinc oxide loses oxygen.	1	1.1	
		(ii)	Aluminium is less reactive than zinc.Aluminium is more reactive than carbon.✓Aluminium oxide is very rare.Zinc is less reactive than carbon.✓Zinc oxide melts when it is heated.	2	1.1	
	(b)	(i)	liquid ✓	1	1.1	
		(ii)	lons/ <u>charged</u> particles \checkmark cannot move <u>in solid</u> / can move when molten/in a liquid \checkmark	2	1.1	IGNORE reference to free electrons
		(iii)	aluminium aluminium oxide negative water hydrogen oxygen	2	2.1	ALLOW one mark for 'aluminium' and 'oxygen' identified as correct products. DO NOT ALLOW if more than one line drawn from a box on the left hand side.

	Questi	on	Answer			Marks	AO element 1.1	Guidance
6	(a)			True	False	3		4 correct = three marks 3 correct = two marks
			Most of the mass of the atom is in the nucleus	~				2 or 1 correct = one mark
			Neutrons have a positive charge		\checkmark			
			The nucleus has an overall positive charge.	✓				
			The nucleus takes up most of the space of the atom		✓			
	(b)		protons 38 AND electrons 38 ✓ neutrons 50 ✓			2	2.1 2.2	
	(c)	(i)	Magnesium ion drawn as 2.8 Mg ²⁺ e.g. Oxygen ion drawn as 2.8 e.g.			2	2.1	
		(ii)	Charge on Magnesium ion = $+2 \checkmark$ Charge on Oxygen ion = $-2\checkmark$			2	2.1	

11

Q	uestion	Answer			Marks	AO element 2.2 1.1 2.2	Guidance
7	(a)	165.4 (Rubidium Bromide) ✓CaBr₂ (Calcium Bromide) ✓247.4 (Strontium Bromide) ✓		3			
	(b)	, , , , , , , , , , , , , , , , , , ,	True	False	2	1.1	4 correct = two marks 3 or 2 correct = one mark 1 or 0 correct = zero marks
		Bonds between metal ions and bromide ions are strong	~				
		Metal bromides have covalent bonds.		\checkmark			
		When metal bromides melt they lose electrons.		\checkmark			
		It takes a lot of energy to separate the ions					

C	Question		Answer	Marks	AO element	Guidance
8	(a)	(i)	The enzyme is a catalyst.✓The enzyme changes the concentration of the hydrogen peroxide	1	1.1	
		(ii)	Particles closer together / more particles in same volume / particles more crowded ✓ Collisions more frequent / more chance of successful collisions ✓	2	1.1	ALLOW molecules for particles
	(b)	(i)	pH meter /pH probe ✓ Read off numbers/scale ✓ OR universal indicator ✓ Check colour/pH <u>chart</u> ✓	2	1.2	
		(ii)	Any two from: Enzyme denatured/stops working at pH greater than $6 \checkmark$ enzymes have an optimum pH / work best at pH $6 \checkmark$ No longer catalyst / activation energy increased / works less well when not at optimum pH. \checkmark	2	1.2	

C	Question		Answer		AO element	Guidance
9	(a)		limewater ✓ goes cloudy /milky ✓	2	1.2	ALLOW white precipitate
	(b)		carbon monoxide formed ✓ poisonous /toxic✓	2	1.1	ALLOW correct formula ALLOW carbon particulates/soot IGNORE harmful/dangerous ALLOW lung cancer/asthma linked to C particulates (Marking point 2 dependant on Marking point1)
	(c)	(i)	A products ✓ B energy change of reaction C activation energy	2	2.1	3 correct = two marks 2 correct = one mark 1 or 0 correct = zero mark DO NOT ALLOW if more than one line drawn from a letter on the left hand side.
		(ii)	more than ✓ given out ✓ exothermic ✓	2	2.2	3 correct = two marks 2 correct = one mark 1 or 0 correct = zero marks
	(d)		More charcoal particles have enough energy to react✓The activation energy decreases.□The burning firelighter takes energy from the charcoal□The charcoal particles increase in energy✓The reaction becomes more exothermic.□	2	1.1 2.1	

13

C	Question		Answer		Marks	AO element	Guidance	
10	(a)	(i)	Empirical Formulae = C_3H_8 AND $C_2H_5 \checkmark$ Molecular Formula = $C_6H_{14} \checkmark$ Structural Formula = $\begin{array}{c} H & H & H & H & H & H \\ I & I & I & I & I & I \\ H - C - C - C - C - C - C - H \\ I & I & I & I & I \\ H & H & H & H & H \end{array}$			3	2.2	All bonds must be shown
		(ii)		True	False	2	1.1	4 correct = two marks 3 or 2 correct = one mark
			It shows the simplest ratio of atoms in a molecule.		~			1 or 0 correct = zero marks
			It shows how many atoms are in a molecule.	~				
			It shows how the atoms in a molecule are arranged.	~				
			It shows the molecule in 3D.		✓			
	(b) (i) 60 to 100°C ✓ (actual value 69°C)			1	3.2b			
	(ii) The values go up and down ✓		1	3.2a	ALLOW fluctuate/ not regular/not flowing in a steady correlation/no trend IGNORE does not change/does not vary			
		(iii)	Liquid ✓ Above melting point AND below boiling point	✓		2	3.2b	ALLOW between melting point and boiling point IGNORE melting point and boiling point quoted without reference to above/below/between etc

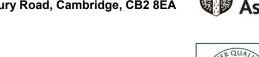
Question	Answer	Marks	AO element	Guidance
(iv)	 Any two from: Boiling points increase as number of carbons increases/Molecules get bigger ✓ Intermolecular forces get stronger/more intermolecular forces ✓ More energy needed to separate the molecules ✓ 	2	2.1	IGNORE boiling points increase down the table IGNORE bonds if not clear that bonds are iintermolecular DO NOT ALLOW stronger intermolecular forces if between atoms/elements ALLOW more energy to break intermolecular forces DO NOT ALLOW more energy to break it down.

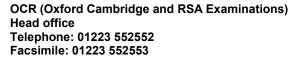
C	Question		Answer		AO element	Guidance
11	(a)	(i)	Their diameters are between 1 to 100nm ✓	1	1.1	
		(ii)	Bonds between carbon atoms are strong. ✓ Lots of bonds must be broken to break the tube. ✓	2	1.1	
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2500(mm) award 3 marks $2nm = 2 \times 10^{-6} \text{ mm } \checkmark$ $0.001 \div 2 \times 10^{-6} = 500 \checkmark$ $500 \times 5 = 2500(mm) \checkmark$	3	1.2 2.2x2	
	(b)		Benefit get to where it's needed / less harm to rest of body Risk possible side effects/ long term effects not known	2	2.1	 ALLOW keeps medicine in one place/non-invasive method/more effective/smaller doses needed/acts as a vector (for the drug) ALLOW not enough research/body may reject it/get lost inside the body IGNORE references to infection/named side effects/new science/expensive

PMT

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre


Education and Learning


Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

© OCR 2019