

F

Friday 06 November 2020 - Morning

GCSE (9–1) Combined Science B (Twenty First Century Science)

J260/01 Biology (Foundation Tier)

Time allowed: 1 hour 45 minutes

* 8 2 7 0 8 0 4 0 4 8

You must have):
---------------	----

• a ruler (cm/mm)

You can use:

- a scientific or graphical calculator
- an HB pencil

Please write clea	arly in blac	k ink. Do r	not wri	te in the barcodes.		
Centre number				Candidate number		
First name(s)						
Last name						

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 95.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 28 pages.

ADVICE

• Read each question carefully before you start your answer.

2

Answer all the questions.

1	(a)	Put	a (rir	ng) around t	he correct o	ption to con	nplete ea	ch sentenc	e about th	ne structure	e of DNA.
				a long-chair des / suga	n molecule, v rs.	which is ma	ide from s	smaller mo	lecules c	alled amin	o acids /
		The	se sr	maller mole	cules join to	form a mor	nomer / p	olymer / p	rotein.		
		Two	stra	nds of DNA	form a dou	ble / single	/ triple h	elix.			[3]
	(b)	(i)		method for in the corre	using a light	nt microscop	oe to see	a sample o	of cells is	shown bel	ow, but is
			Α	A higher po	ower objectiv	ve lens is se	elected ar	nd used to	focus the	image.	
			В	A stain is a	dded to the	cells.					
			С	The cells a	re squashed	d into a thin	layer on	the slide.			
			D	The lowes	t objective le	ens is select	ed and us	sed to focu	s the imag	ge.	
			E	The prepar	red slide is p	laced on th	e microso	cope stage			
			Writ	e the letters	s in the boxe	s to give the	e correct	order for th	e method	l.	
			The	first one ha	as been don	e for you.					
				С							
								J		J	[3]
		(ii)	A st	udent calcu	lates the len	gth of a pla	nt and an	imal cell us	sing a ligh	nt microsco	pe.
				•	ne plant cell ne animal ce	•					
			Hov	v many time	s bigger is	the plant ce	II compar	ed to the a	nimal cell	?	
			Put	a (ring) aro	und the corr	ect answer.					
			250	0	40	4	0.25				[1]


[1]

(c)	Animal cells are approximately 10 times bigger than bacterial cells.	
	Which statement about order of magnitude for animal cells and bacteria	l cells is true ?
	Tick (✓) one box.	
	Animal cells are the same order of magnitude as bacterial cells.	
	Animal cells are ten orders of magnitude bigger than bacterial cells.	
	Animal cells are two orders of magnitude bigger than bacterial cells.	
	Animal cells are one order of magnitude bigger than bacterial cells.	

2 DiGeorge syndrome is a genetic disorder caused by the deletion of a small part of chromosome 22.

A genetic test can be used to show if babies have this disorder.

(a) Some friends are discussing if babies should be genetically tested for DiGeorge syndrome soon after they are born.

Mia

The genetic test could harm the baby, or the result may not be accurate.

Alex

Testing all babies will be too ex ensige for the National Health Service (NHS).

Kai

Most of the symptoms can be treated, and the babies with this condition have the right to a good quality of life.

(i)	Which friend is considering risk?	
		[1]
(ii)	Which friend has a concern that should be answered by government and society?	
		[1
iii)	Which friend is thinking about ethical issues?	
		[1
iv)	Give one other example of when a genetic test could be used.	
		F4 :

(b)	679 106 babies were born in the UK in 2017.		
	It is estimated that 1 in every 2000 babies are born with DiGeorge synder	rome.	
	Calculate the expected number of babies born in 2017 with DiGeorge sy	/ndrome.	
	Give your answer to the nearest whole number.		
	Expected number =		[2]
(c)	Scientific discoveries are often reported in newspapers.		
	Why is it important that scientific discoveries are reported in newspapers	s?	
	Tick (✓) two boxes.		
	More people read newspapers than scientific journals.		
	Scientists write in newspapers to make money.		
	Other scientists can check the validity of the work.		
	The government can see the risks involved in the research.		
	The research could affect people's lives so they should know about it.		[2]

3	(a)	Suggest three	lifestyle	factors	which	can	affect	good	health
---	-----	---------------	-----------	---------	-------	-----	--------	------	--------

1	
2	
3	
٥	[3]

(b) (i) Salmonella bacteria can cause food poisoning.

Fig. 3.1 shows some of the body's natural defences against disease.

Which two natural defences protect us against Salmonella?

Put a (ring) around the **two** correct answers.

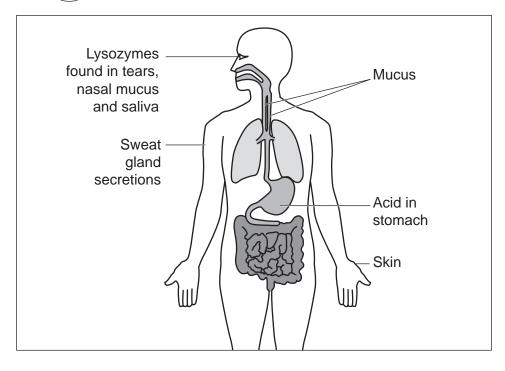


Fig. 3.1 [2]

(ii) A population of Salmonella bacteria reproduce approximately every 30 minutes.

Calculate how many *Salmonella* bacteria will be present after four hours, when starting with one bacterium in the population.

Assume no bacteria have died.

(iii)	Salmonella infections can be treated with antibiotics.		
	Which two statements explain why doctors do not usually give antibiotics infected with <i>Salmonella</i> bacteria?	to peo	ople
	Tick (✓) two boxes.		
	Antibiotic use causes individual bacteria to become resistant.		
	Antibiotics do not kill viruses.		
	Antibiotic use increases the chance of antibiotic-resistant bacteria surviving.		
	Salmonella bacteria don't cause symptoms in people.		
	The body's immune system will usually kill all the Salmonella bacteria.		[2]

(c) A researcher tested the effectiveness of **three** different concentrations of antibiotic on the growth of *Salmonella* bacteria.

Paper discs were soaked in each antibiotic and then placed on an agar plate which was covered in the *Salmonella* bacteria. One other paper disc was soaked in sterile water as a control disc.

The clear zones are where the bacteria did not grow. The results are shown in Fig. 3.2.

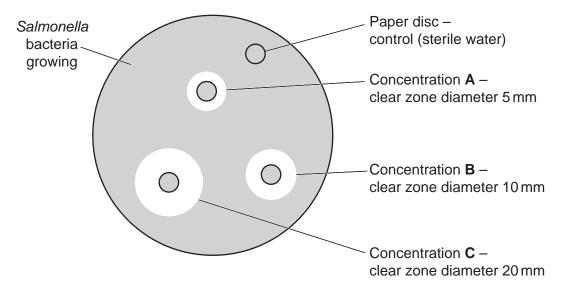


Fig. 3.2

(1)	Which concentration of antibiotic, A , B , or C , was the most effective?	
		[1]

(ii) Calculate the cross-sectional area of the clear zone (including the area of the disc) for the most effective concentration of antibiotic.

Use a clear zone diameter given in Fig. 3.2.

Use the formula: πr^2

 $\pi = 3.14$

Cross-sectional area = mm² [3]

(d)	Son	ne antibiotics work by attacking bacterial cell walls.	
	Wh	y do these antibiotics not attack human cells?	
	Tick	⟨⟨✓⟩ one box.	
	Hur	man cells do not have a cell wall.	
	Hur	man cells have a cell wall and a cell membrane.	
	The	e cell wall in human cells is too thick.	
	The	e cell wall in human cells is too thin.	[1]
(e)	(i)	Drug companies are trying to develop new medicines.	
		The four stages in the testing of a new medicine are given below, but are not in correct order.	the
		A Animal testing	
		B Healthy human volunteers	
		C Cultured human cells	
		D Human volunteers with disease	
		Write the letters in the boxes to give the correct order of the stages for the testing of n medicines.	ew
	(ii)	Which stage, A , B , C or D , only assesses the safety of the new medicine?	[3]
	()		[1]

4	(a)	(i)	Shorthorn cattle were kept by 18th century farmers as they produced both meat a milk.	nd
			By the 20th century, farmers used selective breeding to produce two types of shorthocattle:	rn
			Type ${\bf A}$ – cattle that produced a large quantity of good quality meat, but produced lit milk.	tle
			Type B – cattle that produced poor quality meat, but lots of milk.	
			Describe how farmers used selective breeding to produce type A shorthorn cattle.	
				3]
		(ii)	In the 18th century the human population of the world was approximately 1 billion. The human population of the world now is approximately 8 billion.	
			Suggest two ways in which selective breeding has helped humans.	
			1	
			2	
				[2]

(b) Coat colour in cattle is controlled by genes.

A red cow and a black bull reproduce. The coat colour of the offspring is black, as shown in **Fig. 4.1**.

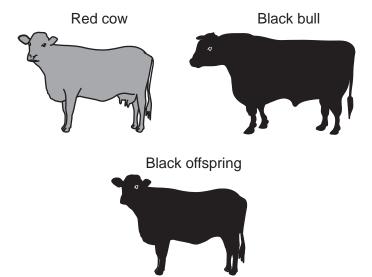
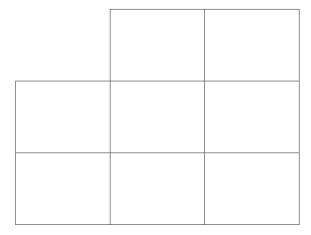


Fig. 4.1

(i) The dominant allele for coat colour is black.

Write down the genotype of a homozygous red cow and a homozygous black bull.


Use **B** to represent the black allele and **b** to represent the red allele.

Genotype of red cow

(ii) When a homozygous red cow and a homozygous black bull (first generation) are mated all of the offspring (second generation) are black with the genotype **Bb**.

If the offspring of homozygous red cows and homozygous black bulls (second generation) breed, some of the offspring in the third generation are black **and** some are red.

Complete the Punnett square to show the expected percentage of black cattle and red cattle in the **third** generation.

Percentage of black cattle =%

Percentage of red cattle =% [3]

Turn over

((iii)	A cow h	nas 60 chromosomes in each	of its body cells.				
		Egg ce	ells are produced by meiosis of body cells.					
		How many chromosomes are there in the egg cell of a cow?						
		Tick (✓) one box.						
		15						
		30						
		60						
		120		[1]				
(c)	helps maintain biodiversity.			help prevent grassland turning into woodland. This r with how the behaviour helps maintain biodiversity. How behaviour helps maintain biodiversity				
		Cow excretes faeces and urine, which are a form of organic fertiliser.		Allows new plants to start to grow.				
		ows eat l acken pl	arge fast-growing ants.	Increases the amount of nitrates in the soil.				
		razing produces patches of bare arth.		Reduces competition, so smaller plants can grow.				
	Но	ooves tre	ead seeds into the soil.	Seeds are less likely to be eaten by birds.				

13 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

5 Fig. 5.1 shows a model of the circulatory system in a human.

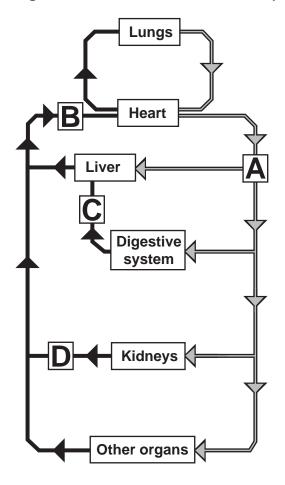


Fig. 5.1

(a) The circulatory system moves substances around the body.

The blood vessels, **A**, **B**, **C** and **D**, in **Fig. 5.1** each carry different compositions of blood.

Identify which blood vessel carries which blood composition. Tick (✓) **one** box in each row.

Blood composition	Α	В	С	D
The highest concentration of carbon dioxide.				
The highest concentration of dissolved food.				
The highest concentration of oxygen.				
The lowest concentration of urea.				

(b)	Explain how the structure of the heart is adapted to pump blood around the body.			
	[3]			

(c)* Some babies are born with a hole in the heart.

Fig. 5.2 show a cross-section of normal heart and a heart that has a hole in it.

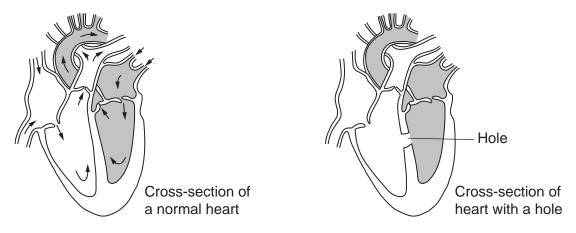


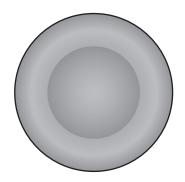
Fig. 5.2

Suggest how the hole in the heart will change the circulation of blood and how this will affect the cellular activity in the baby.
[c]

17 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

6 (a) Blood transports many substances around the body.


Complete the table to show whether each substance is transported in the blood by the **plasma** or by the **red blood cells**.

Tick (✓) one box in each row.

Substance	Plasma	Red blood cells
Carbon dioxide		
Dissolved food		
Oxygen		
Water		

[2]

(b) The diagram shows two views of a red blood cell.

Explain how the shape of a red blood cell is adapted to its function.
[4]

PMT

(c) Red blood cells have an approximate diameter of 7.8 × 10⁻³ mm.

Convert 7.8 × 10⁻³ mm into decimal form.

Tick (✓) one box.

0.00078 mm

0.078 mm

0.78 mm

7 (a) Fig. 7.1 shows a labelled cross section of a leaf.

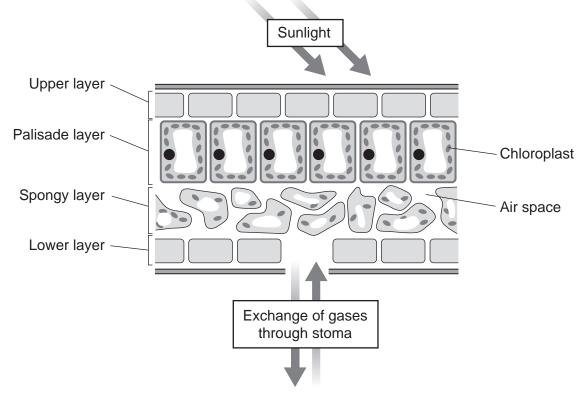
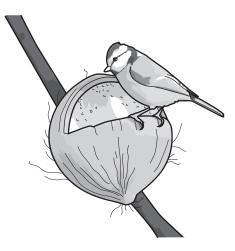


Fig. 7.1


	Exp	lain why more photosynthesis takes place in the palisade layer than the spongy layer.	
	Use	Fig. 7.1 to support your answer.	
(b)	Two	transport tissues are found in plants.	
	(i)	Name the transport tissue that transports water and minerals.	
	410		[1]
	(ii)	Name the transport tissue that transports sugars.	F4 :

(iii) The sugars that are made by photosynthesis move into a transport tissue to go to the

		rest of the plan	nt.				
	Which process moves sugars into the transport tissue?						
	Put a (ring) around the correct answer.						
		Active transp	ort Res _i	oiration	Osmosis	Transpiration	n [1]
(iv)	A student uses	s a microscope	to count the n	umber of stoma	ata in a field of	view.
		The student coare shown in the		ber of stomata	in three other	fields of view,	and his results
		Num	nber of stoma	ta per field of	view	Mean	
		9	11	14	10		
		Calculate the r	mean number (of stomata per	field of view.		
		Use the data ir	n the table.				
			Mean nu	mber of stoma	ta =		[1]
(c)		e of the sugar	rs that are ma	de by photosy	nthesis are joi	ned together to	make a large
	Wha	t is the name o	of this large sto	rage molecule	?		
	Tick	(✓) one box.					
	Fatty acid						
	Lipic	I					
	Prot	ein					
	Star	ch					
							[1]

8 Amaya feeds birds in her garden.

She wants to see if there is a relationship between the body mass of the bird and how often they are feeding.

(a) Amaya records how often she sees each bird species feeding and produces a dominance rank, as shown in the table.

The highest ranked species, the house sparrow, is seen feeding the most.

She finds out the mean body mass for each bird species from doing some research.

Bird species	Mean body mass (g)	Rounded body mass (g)	Dominance rank
House sparrow	27.3		1
Nuthatch	21.6		2
Goldfinch	15.5		3
Chaffinch	21.8		4
Coal tit	9.4		5

Complete the table by rounding the mean body mass of each bird species to the **nearest** whole number. [2]

23 Plot a graph of dominance rank against rounded body mass, using the data in the table. (ii) Draw a line of best fit. [1] **(c)** Before Amaya collected the data, she wrote the following hypothesis: The greater the mass of the species of bird, the more often the species will feed. Do Amaya's findings support her hypothesis? (i) Use the graph to explain your answer. [1] Explain why Amaya's findings do **not** prove her hypothesis. (ii)

© OCR 2020 Turn over

.....[2]

(d)	The birds in Amaya's garden are part of a community that includes plants and other anima species.
	The species in this community are interdependent.
	Give two reasons why this interdependence is important for the species in the community.
	1
	2
	[2]

9	(a)	Complete the sentences to describe the process of photosynthesis.
		Use words from the list.

You may use the words once, more than once or not at all.

carbon dioxide	chlorophyll	energy	glucose		
light	oxygen	protein	respiration		
starch	transpiration	water			
Photosynthesis has two	o main stages. The first stage	e requires light and			
	to split water molecules into	hydrogen and the wast	e product		
	. Some of the waste product	t is used for	by		
the plant, and the exces	ss is released from the leave	s. The hydrogen is trans	sferred to the		
second stage.					
In the second stage car	rbon dioxide and hydrogen co	ombine to make			
The process of photosy	enthesis is endothermic, and	endothermic processes	require transfer		
of from the surroundings.					

(b) A student is investigating the requirements of photosynthesis.

The student sets up **three** tubes, **Tube A**, **Tube B**, and **Tube C** as shown in **Fig. 9.1**, and leaves them for 24 hours in a room with windows.

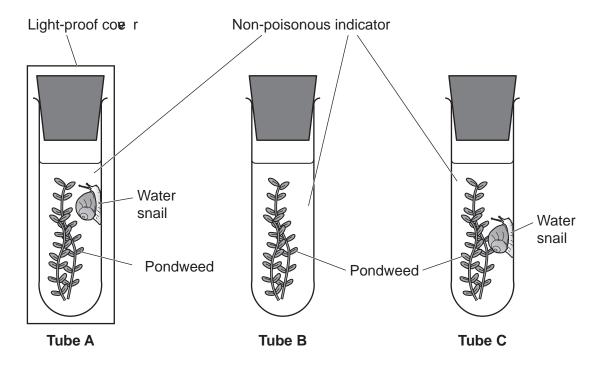


Fig. 9.1

Table 9.1 shows the indicator colour changes when the carbon dioxide level changes.

Carbon dioxide level	Indicator colour change
Decreases	Red to purple
Increases	Red to yellow

Table 9.1

Table 9.2 shows the colour of the indicator at the start, and at the end after 24 hours, for each tube.

Tube	Colour of indicator at the start	Colour of indicator at the end after 24 hours
Α	Red	Yellow
В	Red	Purple
С	Red	Red

Table 9.2

(i)	Which tube, A , B or C , shows that carbon dioxide is needed for photosynthesis to o	ccur?
	Explain your answer.	
	Tube	
	Explanation	
		[2]
(ii)	Which tube, A , B or C , shows that light is needed for photosynthesis to occur?	
	Explain your answer.	
	Tube	
	Explanation	
		[2]
(iii)	Explain why the indicator in Tube C does not change colour.	
		[2]
(iv)	Identify one variable that should be kept the same in the student's investigation.	
		[1]

END OF QUESTION PAPER

28 ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.