WJEC Physics GCSE Topic 2.4: Further motion concepts Questions by topic

The diagrams show two stationary space vehicles in the act of separating. 2 m/s At rest Vehicle A Vehicle B Vehicle A has a mass of 50 000 kg. Vehicles A and B are at rest before the separation. The total momentum is zero. After the separation, vehicle A moves with a velocity of -2 m/s. Use the equation: momentum = mass × velocity to calculate the momentum of A after the separation. [2] momentum = kg m/s No momentum is lost when they separate. Write down the momentum of B after they separate. [1] momentum = kg m/s (iii) Vehicle B has a mass of 80 000 kg. Use the equation: momentum velocity = mass to find the velocity of vehicle B after the separation. [2]

velocity = m/s

2 (HIGHER).

(a)	State the law of conservation of momentum.	[1]

(b) A bullet of mass 0.01 kg is fired into a wooden block of mass 0.39 kg that is hanging at rest on a string. The bullet becomes embedded in the block which then starts to move with a velocity of 10 m/s.

(i) Use an equation from page 2 to calculate the velocity of the bullet, *v* before it enters the block. [3]

velocity of bullet, $v = \dots m/s$

(ii) Use an equation from page 2 to calculate the kinetic energy lost in the collision. [3]

KE lost = J

- (b) The diagram below shows the stages in a collision between a van and a car.

(i) Use an equation from page 2 to calculate the total momentum before the collision. [3]

momentum = kg m/s

(ii) Calculate the momentum of the van after the collision. [1]

momentum of van = kg m/s

	(iii)	Calculate the momentum of the car after the collision. [1]
		momentum of car = kg m/s
	(iv)	Use the equation:
		$velocity = \frac{momentum}{mass}$
		to calculate the velocity, ν of the car after the collision. [1]
		velocity, $v = \dots m/s$
(c)		ng the collision, the van exerts a force of 16000N on the car. State the size and ction of the force exerted by the car. [1]
	•••••	

A girl catches and stops a ball of mass 0.15 kg which is moving at a speed of 20 m/s.

(i)) Use the equation:	
	$momentum = mass \times velocity$	
	to calculate the change in momentum of the ball.	[2]
	Momentum change = kg	g m/s
(ii)	Use an equation from page 2 to calculate the force applied by the girl if the b stopped in 0.5 seconds.	all is [2]
	Force =	N
(iii)	The girl now doubles the time taken to stop the ball by moving her hands tow her as she catches it. What is the size of the force now?	vards [1]
	Force =	N

<i>(b)</i>		ome situations people have to be stopped suddenly and safely. The force on them is used by increasing the stopping time.	
	(i)	Name a situation in which this happens. [1]	
	(ii)	Describe how the stopping time is increased. [1]	
	04>4******		
			7

5 (HIGHER).

A football of mass 0.3 kg is dropped from rest off a bridge and takes 2.8 seconds to reach the ground below.

The diagram is not drawn to scale

Use equations from page	e 2 to answer the questions below.
Assume the acceleration	due to gravity = $10 \mathrm{m/s^2}$ and that air resistance is negligible

Assu	me the acceleration due to gravity = 10 m/s² and that air resistance is negligible.	
(a)	Calculate the height of the bridge.	[2]
	height =	m
(h)	Colorilate the group of the hell inst before it hits the ground	10.
(b)	Calculate the momentum of the ball just before it hits the ground.	[3]

momentum =kg m/s

(c)	The	ball rebounds from the ground with a speed of 14 m/s.
	(i)	Calculate the kinetic energy of the football as it leaves the ground. [2]
		kinetic energy = J
	(ii)	Calculate the change in momentum of the ball due to the bounce. [2]
		change in momentum =kg m/s
	(iii)	Explain how momentum is conserved when the ball rebounds from the Earth. [2]
(d)	Desc	cribe how Newton's third law of motion applies when the ball hits the ground. [2]

An aeroplane flies horizontally at a constant speed of $65\,\mathrm{m/s}$ at a height, x when it drops a package. The package reaches the ground $12\,\mathrm{s}$ later.

Ignore air resistance throughout the question.

(a)	Use an equation from page 2 to calculate the vertical speed, v of the package	when it
	reaches the ground. (Acceleration due to gravity, $g = 10 \text{m/s}^2$)	[3]

	100	-
17 -	m/	-
	 1 1 1/	0

(b) Use an equation from page 2 to calculate the height, x of the plane above the ground. [3]

$$x =$$
 m

(c)	Use the equation: distance = speed × time
	to calculate how far the aeroplane moves horizontally in 12 s. [2]
	distance = m

Calculate the change in velocity of the car. [
change in velocity =m/
) The driver of the car has a mass of 60 kg. Use the equation:
momentum = mass × velocity
to calculate the change in momentum of the driver.
change in momentum =kg m/
) The car slowed down for 6s. Use the equation:
force = change in momentum time
force =
unit
eat belts help to keep drivers and passengers safer when the car stops suddenly durin
accident.
change in velocity =m/s (ii) The driver of the car has a mass of 60 kg. Use the equation: momentum = mass × velocity to calculate the change in momentum of the driver. [1] change in momentum =kg m/s (iii) The car slowed down for 6 s. Use the equation: force =kg m/s to calculate the size of the force acting on the driver during braking. State the unit. [2] force =unit

(a) 	Define the moment of a force.	
		(2)
(b)	The diagram shows a uniform diving board of weight, W , that is fixed at A. The diving board is supported by a cylinder at C, that exerts an upward force, P , on the board. P	g
	A B	
	Č W	
(i)	By considering moments about A, explain why the force P must be greater than the weight of the board, W.	
(ii)	State and explain what would be the effect on the force <i>P</i> of a girl walking along the board from A to B.	
	(Total 6 mark	(4) (s)

The figure below shows a motorcycle and rider. The motorcycle is in contact with the road at ${\bf A}$ and ${\bf B}$.

The motorcycle has a weight of 1100 N and the rider's weight is 780 N.

(a)	State the Principle of Moments.	
		(2
(b)	Calculate the moment of the rider's weight about B . Give an appropriate unit.	
	answer =	(2

(c)	By taking the moments about B , calculate the vertical force that the road exerts on the front tyre at A . State your answer to an appropriate number of significant figures.	
(d)	answer =	(4)
	answer = N	(1)