Eduqas Physics GCSE Topic 8.3: Induced potential and transformers Mark Schemes for Questions by topic

Sub-	section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)		2	Responds to changes in demand / copes with power station failures (1) by bringing reserve or backup stations [online] (1)		Peak times	
(b)		3	$\frac{2 \times 10^{8}}{400\ 000} = 500\ [A]$ (1 - manip. & subs.), (1-conversion from 400 kV to 400 000) (1- ans)	Incompatible units to give an answer of 5 × 10 ⁿ gets 2 marks		
			Alternative: Input current calculated = 4 000 [A] (1) Voltage ratio is 1:8 and current ratio is 8:1 (1) so = 500 [A] (1)			
(c)		3	Transmission at 50 kV would produce a greater current [through the grid] (1) resulting in a bigger power/heat/energy loss [in the cables] (1) The energy wasted in the two transformers is less than the energy that would be wasted from operating at a lower voltage with no transformers (1) All three marks can only be awarded if the 3 rd mark is linked to the first two marks.	Converse argument		Prevent heat loss
Т	otal	8				

Que	stion		Marking details	Marks
4.	(a)	(i)	A network of [power] cables/ wires (1) that connect power stations to consumers / homes / schools / factories.(1)	2
		(ii)	lower current (1) to reduce energy / heat losses or to improve efficiency (1) Either mark can be awarded on its own but only award 2 marks if they are linked.	2
	(b)	(i)	step-down because output voltage is smaller / input voltage higher / reduces voltage or less turns on output coil / more turns on input coil / turns reduced. (Accept it supplies homes / schools / industry.)	1
		(ii)	[power = voltage x current] $I = \frac{10000000}{400000}$ (1 sub/manip, 1 conv)	3
			(for $\frac{10}{400}$ with answer = 1 mark, but with any compatible conversion gets both marks e.g. $\frac{10000}{400}$ – 2 marks)	
		(iii)	= 25[A] (1 ans)	3
		(111)	$99 = \frac{\text{power output}}{10 \times 10^6} \times 100$,
			power output = $\frac{99}{100}$ x 10 x 10^6 = 9.9 x 10^6 W or 9.9 MW (1sub, 1 manip, 1 ans with correct unit)	
			Question total	[11]

Sub	-secti	on	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		2	Coil (1) – in right blank Magnet[s] (1) – in left blank	N pole / S pole		Wire Pole
	(ii)		1	Wires or coil or it cuts field [lines] Or magnetic flux through the coil changes	Passes through field lines		Splitting field lines Reference to electromagnetic induction
(b)	(i)		1	Amplitude doubled ± 1 small square tolerance and with one and a half cycles shown for whole of graph			
	(ii)		2	At least one peak and one trough but all drawn must have amplitude doubled (1) ± 1 small square tolerance 3 cycles shown for whole of graph (1)			
(c)	(i)	Т	1	D			
	<u> </u>	Ш	1	D			
		Ш	1	E			
		IV	1	6 [V]			
	(ii)		2	HT only e.g. $\frac{10}{150} = \frac{500}{N_2}$ or $\frac{150}{10} = \frac{N_2}{500}$ (1-subs) $N_2 = 7500$ (1)	Ratio of 1:15 on the turns award 1 st mark		
Т	TOTAL		FT = 10 HT =12				

Quest	ion		Marking details	Mark
4.	(a)		U	1
	(b)	(i)	coil A because it has the bigger voltage of the two [both points required for the mark] or it's a step-down transformer or A has less current	1
		(ii)	to set up a changing magnetic field [in the iron core] don't accept moving	1
		(iii)	to transfer / link the <u>field</u> into coil <u>B</u>	1
		(iv)	The <u>changing magnetic field</u> induces a voltage in coil B (cutting is neutral)	1
		(v)	$\frac{230}{12} = \frac{18400}{N2} [1 \text{ sub}] N_2 = 18400 \times \frac{12}{230} N_2 = 960 (1)$	2
			Question total	[7]

Qı	ıestioı	1	Marking details	Mark
	(a)	-	Correct substitution into $\frac{V_1}{V_2} = \frac{N_1}{N_2} \rightarrow \frac{132000}{V_2} = \frac{154000}{50}$ (1) Rearrangement i.e. $V_2 = \frac{132000 \times 50}{154000}$ (1) 429 [V] (1) accept 428 [V] or 430 [V] Alternative method: Substitution of 768 turns (1) Rearrangement to give 659 [V] (1) Subtraction of 230 [V] to give 429 [V] (1)	3
	(b)	(i)	Increased voltage (1) Because of increased number of [secondary] turns (1) To award both marks both statements must be linked.	2
		(ii)	Failure of electrical equipment / Overheating of equipment / Fire / fuse blows ecf from (i)	1
		(iii)	No effect. (1) Because the ratio of primary to secondary turns for the business remains the same / still connected to B and C (1) Alternative: The businesses lose their supply / the voltage falls to 0 (1) because B joins to C (1). To award both marks both statements must be linked.	2
	(c)		Alternating input current or voltage (1) creates changing magnetic field (1) links (or cuts) with output coil / <u>induces</u> an [alternating] current / <u>induces</u> an [alternating] voltage (1)	3
			Question total	[11]

-							
Sub	-sectio	n	Mark	Answer	Accept	Neutral answer	Do not accept
(a)			2	Full core drawn so as to pass inside both coils and	To increase the		A half core
				labelled IRON CORE (1)	field strength		drawn or a
				Function is to take the magnetic field [from the primary	through the		single line
				coil] into the secondary coil / linking the magnetic field	secondary coil		drawn
				of primary and secondary coils (1)	•		Links the two
				, , , , , , , , , , , , , , , , , , , ,			coils for the
							2 nd mark
(b)	(i)		2	As the number of turns on the input coil increases, the	Award 1 mark for		in a non-
` ′	\ ' <i>'</i>			output voltage decreases (1) at a decreasing rate (1)	negative		linear way /
				, , , , , , , , , , , , , , , , , , , ,	correlation		non-uniform
					Award 2 marks		way /
					for inversely		reference to
					proportional		the gradient
	(ii)		2	400 2000	<u> </u>		
	\			$\frac{400}{60} = \frac{2000}{N_2} \text{ (e.g. using paired values from graph)}$			
				(1-subs)			
				$N_2 = 2000 \text{ x} \frac{60}{400} = 300 \text{ (1-ans)}$			
				$IV_2 = 2000 \text{ x} \frac{1}{400} - 300 (1-alis)$			
	(iii)		3	(1-for 120 from graph)	480 = 120 × /		
	` ′				gets first 2 marks		
				$P = VI$ so $I = \frac{480}{120}$ (1-substitution)	Use of voltage		
				I = 4 [A] (1-manipulation and answer)	value between 0		
				י – א נהן (ו־ווומוווףulation and answer)	- 230 V		
\vdash	(iv)	\vdash	1	Line drawn to the left and always below the line that is			Any touching
	(, ,		'	given in the question			of the original
				given in the question			line
Total	al Mark	_	10		l .	1	mie
101	ai iviai r		10				

Suk	-sectio	n Mark	Answer	Accept	Neutral answer	Do not accept
(a)	i	2	4 (1) 20 (1)			
	ii	3	Plots ± ½ small square division (2) -1 mark for each incorrect plot to a maximum of 2 Straight line through origin – no tolerance (1)	ecf for the input voltage value "4" for plotting treated as an anomalous point when drawing line If all points are misplotted can award ecf for line mark		Thick, whispy, double, wobbly lines
	iii	2	Input voltage increases so does output (1) It doubles (1) Award 1 mark for - [Directly] proportional to each other	Positive correlation = 1 mark When the input voltage increases by 1 the output voltage increases by 2 = 2 marks Output = 2 × input (award 2 marks)		Linear unless qualified
	iv	1	С	,		
	v	1	Α			
(b)		2	Decreases voltage (1) To make it safe[r] (1) The 2 nd mark needs to be linked to the 1 st mark	For safety reasons Less dangerous Step down voltage	References to energy and power Increases the current	Decreases the electricity
	Total	11				

Question Number	Answer	Acceptable answers	Mark
2(a)	В		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	an explanation linking three of the following		
	(waves cause) float to move (up and down)(1)		
	(this causes) magnet to move (in and out of coil) (1)	magnet moves (in the coil)	
	(hence) magnetic field (of magnet) (1)		
	cuts across/links/ interacts wire in coil (1)	Allow{current/voltage/volts/am	
	inducing/generating potential difference across ends of coil (1)	ps} induced/generated in coil	(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	a description including two of the following		
	increase the number of turns on the coil (1)	more coils (of wire) ignore bigger coil	
	use a more powerful magnet (1)	stronger/more magnets Ignore bigger magnet	
	use full scale device (1)	Allow idea of more/bigger/ faster waves	(2)

Question Number	Answer	Acceptable answers	Mark
1(a)(i)	Any one from	Reverse argument (RA) in each case	
	portable (1)		
		can be {moved/used} anywhere ignore convenient/costs	
	not weather dependent (1)		
	takes un loss annes (1)	does not need wind condone (source) {(more) reliable/ always available/used	(1)
	takes up less space (1)	any time}	(1)
		condone smaller	
		'It' refers to generator/petrol	

Question	Answer	Acceptable answers	Mark
Question Number 1(a)(ii)	Answer Any one from uses {fossil fuel/petrol} (1) {non-renewable/finite/limited} resource (1) (exhaust) {fumes/gases} are {polluting /damage environment}(1)	RA in each case fuel costs ignore unqualified references to cost {petrol/fuel} may run out/not sustainable needs refilling constantly produces pollutants /condone pollutes	Mark
		emits named gases e.g.C0 ₂ ,CO, SO ₂ contributes to acid rain/greenhouse effect/global warming not eco-friendly ignore references to noisy/ harmful 'It' refers to generator/petrol	(1)

Question Number	Answer	Acceptable answers	Mark
1(b) (i)	8000 (J)	(if answer wrong, give mark) for 5200 + 2800 (J) 8 k J (note k must be added)	(1)

Question Number	Answer	Acceptable answers	Mark
1(b) (ii)	Substitution (1) 2800 (× 100 %) 8000	ecf from 1(b)(i)	
	Evaluation (1) 35 %	0.35 if 0.35 seen in working but rounded to 0.4 - award mark award full marks for correct answer even with no working	(2)

Question Number	Answer	Acceptable answers	Mark
1(c)	(idea of relative) movement(1) (between) managet/field/flux	cut/cutting/change (of field/flux)	
	 (between) magnet/field/flux (1) (and) coil/conductor/wire (1) {emf/voltage } (produced) (1) without { battery / contact }(1) 	the induced voltage makes current flow in a circuit =1 mark	(3)

Question Number	Answer	Acceptable answers	Mark
4(a)	slip ring coil axle	More than one line from either P or Q (or both) loses the mark for that box	
	Q brush magnet		(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	В		(1)
Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	An explanation linking the following		
	increased brightness (1)	'fuses' / 'blows' / gets hotter	
	(due to) increased voltage (1)	{increased / faster} current increased {power / energy}	(2)

Question Number	Answer	Acceptable answers	Mark
4(c)	substitution (1) 2 x 12		
	evaluation (1) 24 unit (1) W	Give full marks (2) for correct answer, no working (accept bald 2.4 for substitution) = 1 watt(s), AV, VA, J/s	
		If only one number and one unit their position is immaterial otherwise, mark the number in the power generated space and the unit in the unit space	(3)

Question Number	Answer	Acceptable answers	Mark
4(d)	A description including the following		
	voltage (1)	current	
	• increases (1)	decreases (ignore speed of current)	
		Accept for 1 mark • increases current AND reduces voltage • voltage higher and bigger {current/power} • power decreases	
		'it' increases/decreases = 0	(2)

		COII	
(b) (i)	Y= magnet; Z = coil (of wire);		(2)
(ii)	(±)1.6 (V);		(1)
(iii)	reading of time for 1 cycle; evaluation; e.g. 0.04s 25 (Hz)	no mark for eqn as it is given time can be assumed if f= 1/0.04 seen allow for 1 mark 50, 12.5 (Hz)	(2)
(iv)	C higher higher;		(1)
(v)	any one from stronger magnet; more turns on the coil;	ignore bigger magnet condone more coils	(1)

(c) (i)	rearrangement of eqn; substitution;		(3)
	evaluation; e.g. work done (energy output) = power x time (=) 3.1 x 290 900 (W)	Accept 899 (W)	
(ii)	efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$	accept standard abbreviations rearrangements with factor of X 100	(1)
(iii)	substitution; rearrangement of eqn; evaluation; e.g. input energy = output energy efficiency = 899 (W) 0.72 = 1200 (J)	allow 900 for 899 1245, 1250, 1300 (J)	(3)