Eduqas Physics GCSE
Topic 6.2: Interactions of electromagnetic radiation with matter and their applications

Questions by topic

Γ	Method of communication	Type of radiation used	1
T	Optical fibre signals		
	Satellite communication		
	Signals from mobile phone masts		
Rad	io waves and microwaves are two type	s of electromagnetic wave.	
	io waves and microwaves are two type ves:	s of electromagnetic wave.	
	•	s of electromagnetic wave.	
	ves:		
·	ves: can be used for communications	ir.	ves.
• G	ves: can be used for communications travel at the same speed through a	ir. Ime for both radio waves and microwa	ves.
• G	ves: can be used for communications travel at the same speed through a ive two more properties that are the sa	ir. Ime for both radio waves and microwa	ves.
• • • • • • • • • • • • • • • • • • •	ves: can be used for communications travel at the same speed through a ive two more properties that are the sa	ir. Ime for both radio waves and microwa	ves.
• G	ves: can be used for communications travel at the same speed through a ive two more properties that are the sa	ir. Ime for both radio waves and microwa	ves.
• G 1 2 So	ves: can be used for communications travel at the same speed through a ive two more properties that are the sa	vision programmes. Signals are sent to	
· · · · · · · · · · · · · · · · · · ·	ves: can be used for communications travel at the same speed through a ive two more properties that are the sa ome satellites are used to transmit telev	vision programmes. Signals are sent to	
· · · · · · · · · · · · · · · · · · ·	can be used for communications travel at the same speed through a ive two more properties that are the sa ome satellites are used to transmit televel transmitted from, the satellites using	vision programmes. Signals are sent to	

(c)	Ele	ectromagnetic waves travel at a speed of 3.0 × 10° m/s.	
	A r	radio station transmits waves with a wavelength of 2.5 × 10 ² m.	
	Ca	lculate the frequency of the radio waves.	
	Sh	ow clearly how you work out your answer and give the unit.	
			•
		_	
		Frequency =	(3
			(Total 6 marks
3.			
(c)	(i)	State one hazard of exposure to infrared radiation.	
			(1)
	/ii\	State and hazard of exposure to ultraviolet radiation	
	(ii)	State one hazard of exposure to ultraviolet radiation.	
			(1)
(d)	X-ra	ays are used in hospitals for computed tomography (CT) scans.	
	(i)	State one other medical use for X-rays.	
			(4)
			(1)
	(ii)	State a property of X-rays that makes them suitable for your answer in	part
		(d)(i).	
			445
			(1)

(iii) The scientific unit of measurement used to measure the dose received from radiations, such as X-rays or background radiation, is the millisievert (mSv).

The table shows the X-ray dose resulting from CT scans of various parts of the body.

The table also shows the time it would take to get the same dose from background radiation.

Part of the body	X-ray dose in mSv	Time it would take to get the same dose from background radiation
Abdomen	9.0	3 years
Sinuses	0.5	2 months
Spine	4.0	16 months

A student suggests that the X-ray dose and the time it would take to get the same dose from background radiation are directly proportional.

Use calculations to test this suggestion and state your conclusion.	
	(3)

4.

(a) The wavelengths of four different types of electromagnetic wave, including visible light waves, are given in the table.

Type of wave	Wavelength
Visible light	0.0005 mm
A	1.1 km
В	100 mm
С	0.18 mm

	Which of the waves, A , B , or C , is an infra red wave?	
(b)	A TV station broadcasts at 500 000 kHz. The waves travel through the air at 300 000 000 m/s.	(1)
	Calculate the wavelength of the waves broadcast by this station.	
	Show clearly how you work out your answer.	
	Wavelength = m	(2)
(c)	What happens when a metal aerial absorbs radio waves?	
		(2)
d)	Stars emit all types of electromagnetic waves. Telescopes that monitor X-rays mounted on satellites in space.	are
	Why would an X-ray telescope based on Earth not be able to detect X-rays emitted from distant stars?	
		(1)

(a) The diagram shows a ray of light passing into a rectangular glass block. The critical angle for glass is 42".

(i) The light bends at A. Name this effect and give a reason why the light bends. [2]
 (ii) I. Complete the diagram to show what happens to the ray of light at B. [1]
 II. Explain why the ray of light follows this path. [2]

(b) The diagram below shows wavefronts of a water wave in a ripple tank. They are approaching a region of shallow water.

direction of wave travel

shallow water

(i) Measure the wavelength of the waves in the deep water.

[1]

[2]

wavelength = cm

(ii) Complete the diagram to show the wavefronts in the shallow water.