Mark scheme – Powering Earth (F)

Qu	esti	on	Answer/Indicative content	Marks	Guidance
1			В√	1 (AO2.1)	
			Total	1	
2			В √	1 (AO 2.1)	Examiner's Comments The majority of candidates found this question very challenging and did not recognise that the diagram showed a step-up transformer which would decrease the current in the secondary coil, and therefore decrease the power loss. Candidates also struggled to relate power loss to I2 x R. he most common incorrect answer was option C.
			Total	1	
3			A √	1 (AO 1.1)	
			Total	1	
4			A √	1 (AO1.1)	
			Total	1	
5			D	1	
			Total	1	
6			А	1	
			Total	1	
7		i	Simple use of P = V × I / idea of ratios using transformer equations (1) Current reduced by 16 times (1)	2	ALLOW current reduced (1)
		ii	Very large decrease in power loss (1) Power loss is related to the square of the current / AW (1)	2	
			Total	4	
8	а	i	Fossil fuel may run out / is non- renewable / be in short supply / become very costly √	2 (AO3.1b)	ALLOW being used faster than being produced / finite resource
			Named damage to environment: Eg (increased) greenhouse gases /	(AO3.1b)	ALLOW ice caps melting / droughts and storms / more polluting gases / other named polluting gases e.g. SO2 /

				carbon emissio	200	
		global warming / sea levels rise / carbon dioxide / climate change /				n or bad for the environment / more CFCs
		acid rain √				
				Examiner's C	omme	<u>nts</u>
				gained at least not renewable the second ma	t 1 mar . A sigr ark as t vere too	ed AO3 and the majority of candidates k, usually for the idea that fossil fuels are nificant number of candidates did not gain heir responses included statements about o vague e.g. 'harmful emissions' or 'bad
				Exemplar 2		
				This response	was cr	ron-ienlikel and nill eventually Eleane (13 of pollution, which to people and the planet [2] redited with 1 mark for stating that fossil The second mark was not achieved as
				pollution' is no candidate sho	t specil uld hav	ment that 'fossil fuels release lots of fic enough. To gain the second mark, the re referred to an appropriate scientific more CO2 or more greenhouse gases.
						out as fast (as coal) / to preserve fossil e energy (per kg than coal)
				melting / droug	ghts an	g gases / carbon emissions / ice caps d storms llution or just better for the environment /
				Examiner's C	omme	nts
		To meet demand for electricity / not				
	ii	enough energy from renewable resources √ Less named damage to environment: (decreased) greenhouse gases / global warming / sea levels may fall / carbon dioxide / climate change /	2 (AO1.2) (AO1.2)	(2) (?)	mark credi misco renev abou	ugh many candidates achieved 1 or 2 s, a significant proportion did not gain any t. Some candidates had the onception that nuclear power is wable. Others gave vague suggestions t 'damage to the environment'. Only the est ability candidates usually gained full t.
		acid rain / ORA for coal √			AfL	Candidates should be aware that in a Physics exam what they write will be assessed as a specific scientific response. Where candidates use unnamed, vague statements about 'pollution' or 'damage to the environment' these are unlikely to gain credit. For example graffiti, fly tipping and loud music are examples of pollution that are unlikely to be caused a power station.

b	i	5.2 (billion tonnes oil equivalent) √	1 (AO3.1a)	ALLOW answers between 5.0 and 5.5 IGNORE wrong units
	ii	Oil √	1 (AO3.1a)	Examiner's Comments Part (a)(i) and (ii) assessed AO3 and required candidates to use estimated values from the graph. The majority of candidates were able to do this successfully.
	iii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 78 (%) award 2 marks 8.3 / 10.6 (x 100) √ =78 (%) √	2 (AO 2 × 3.1a)	 ALLOW answers that round between 77(%) and 80(%) √√ ALLOW 8.2 / 10.6 (x 100) OR 8.4 / 10.6 (x 100) OR 8.5 / 10.6 (x 100) OR answers that round between 0.77 and 0.80 Examiner's Comments This question required candidates to use estimated values from the graph to work out the amount of energy use due to fossil fuels and then convert their answer into a percentage of the total energy use. The question discriminated well as the lower ability candidates struggled to identify the proportion due to fossil fuels which resulted in percentages that were much smaller than the expected answer. The higher ability candidates, who did identify the amount of energy use due to fossil fuels, were able to calculate the percentage correctly.
с	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.8 (kW) award 4 marks $(P =) ^2 \times R \checkmark$ 11 x 11 x 23 or 11 ² x 23 or 121 x 23 \checkmark = 2783 \checkmark Conversion to kW = 2.8 \checkmark	4 (AO1.2) (AO2.1) (AO2.1) (AO2.1)	 ALLOW 2.78 kW or 2.783 kW √√√√ ALLOW equation in any form ALLOW ECF candidates answer to 3rd marking point converted to kW Examiner's Comments This question required candidates to recall the equation: <i>power</i> = <i>current</i>² x <i>resistance</i> before converting their answers into kW. Out of the candidates who gained credit, most were credited with all four marks. A few candidates were only credited with one mark for converting the power output in W into kW. A significant number of candidates used an incorrect

				equation for power, most commonly using <i>current</i> rather than <i>current</i> ²
				 When a physics question requires candidates to apply their mathematical skills they should always write down how they are answering the question. Using brief notes is and writing down intermediate calculations helps the examiner to see what the candidate is doing. A single finger error will result in many candidates receiving no credit because they only write down their final answer. Marks may be available for each stage of the process, using the correct equation, rearranging the equation, substituting in correct values. Choosing to access these compensatory marks by showing workings is good examination technique.
	ii	Wind speed varies / AW \checkmark	1 (AO2.1)	ALLOW it depends on the strength of the wind / how windy it is / AW IGNORE there might not be any wind / wind changes direction / AW
	iii	(Idea of) not always enough wind / demand may exceed supply / AW √	1 (AO2.1)	ALLOW (it) may not generate enough power / energy / AW Examiner's Comments Most candidates gained full credit for Q16(d)(ii) and (d)(iii). Those who did not gain credit often provided non-specific generalised reasons about the weather or the wind turbine 'breaking'.
d	i	Step-up transformer √	1 (AO1.1)	Examiner's Comments The majority of candidates correctly identified a step-up transformer. However, many lower ability candidates had less secure knowledge and suggested an inappropriate electrical device such as a voltmeter.
	ï	Reduce energy wastage / loss √	1 (AO1.1)	ALLOW less heat loss / reduce current / reduce power loss / more useful power out / more efficient / less heating of wires DO NOT ALLOW no energy losses / prevent energy loss / AW <u>Examiner's Comments</u> This question is a direct assessment of on specification knowledge (P8.2d and P8.2e) that is in both separate Physics and Combined Science. However candidates across the ability range found it challenging and a minority of candidates correctly answered this lower demand question. Misconception

		d.c – (current / voltage / charge flow / it) has one direction or polarity √ a.c (current / voltage / charge flow / it) (continually) changes direction	2 (AO1.1) (AO1.1)	Candidates have many misconceptions about transformers and why the voltage needs be increased. They referred to many incorrect ideas such as to make the energy move faster / further, to transfer enough power to homes and to reduce the resistance. Some candidates suggested that high voltages are used in the National Grid as this reduces energy losses during transmission to zero. OCR support There is a KS3–KS4 Transition Guide (J249) and a KS4–KS5 Transition Guide (H557) that offer support on teaching about generation of and distribution of the domestic electrical supply: http://www.ocr.org.uk/Images/324646-electricity-ks3-ks4- transition-guide.pdf http://www.ocr.org.uk/Images/309732-generating-electricity- transition-guide.pdf ALLOW dc only positive / only negative IGNORE electricity ALLOW current / voltage alternates OR positive and negative Examiner's Comments Most candidates gained at least 1 mark, usually for identifying
		or polarity √		a.c. as alternating current. Common misconceptions for d.c. included 'd.c. is constant' or 'd.c. goes straight to the device'.
		Total	18	
9	а	A.C. (transmitted in power lines) / (electrical/electron/particle) oscillations / AW ✓ BUT Alternating currents/(electrical/electron/particle) oscillations produce (radio) waves/electromagnetic radiation √√	2 (AO2×1.1)	Examiner's Comments This Assessment Objective 1 question assessed candidates' knowledge and understanding of how radio waves are produced. This proved to be one of the most difficult questions on the paper but also discriminated well. Only the most able candidates gained marks for relating the production of radio waves to the oscillations of electrons in the transmission lines. Image: Common misconceptions included radio waves being produced by something in the house or because the transmission lines produced heat.

	b	(High voltage means) lower current √	2	IGNORE no energy losses / prevent energy loss / AW ALLOW more efficient / (wires at) lower temperature Examiner's Comments Although this question has been asked often in past GCSE Physics papers, over one quarter of candidates did not gain credit. Many gained 1 mark for the idea of less energy lost (as heat) but only the more able candidates were able to link this to higher voltages resulting in a lower current.
		Less heating/heat loss/power loss/energy wasted or more useful energy transmitted / ORA √	(AO2×1.1)	AfL Candidates had many misconceptions about why energy should be transferred at high voltages. The responses often referred to incorrect ideas e.g. 'to make the energy move faster/further' or 'to transfer enough power to the home' or 'to reduce the resistance'. Candidates should also be aware that the idea of NO energy losses will not gain credit.
				ALLOW correct equation in any form
		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 20 (A) award 5 marks		DO NOT ALLOW marks to be awarded from incorrect equation e.g. $I = P / R$ Award marks if 6.156kW has not been correctly converted to W
	с	Recall $I^2 = P / R \checkmark$ 6.156 kW = 6156 W \checkmark	2 (AO 1.2) (AO 2.1) (AO 2.1)	E.g. $(I^2 =) 0.4$ or $6.156/15.39 \sqrt{4}$ $(I=) \sqrt{0.4} \sqrt{4} \sqrt{4}$ $I = 0.63 \sqrt{4} \sqrt{4}$
		(I ² =) 6156 / 15.39 OR (I ² =) 400 √	(AO 2.1)	Examiner's Comments
		(I =) √400 √ (I =) 20 (A) √		The majority of candidates scored either zero marks or 5 marks for this question. Over a quarter of candidates did not know the correct equation: power = $(current)^2 x$ resistance. It was common to see an incorrect version of the equation (power = current x resistance) used instead. Some candidates did show their calculations and could therefore score 1 mark for converting kW into W.
		Total	9	
10		Advantage - Any one from: no carbon dioxide produced / does not contribute to global warming/climate change/acid rain / no polluting gases √	2 (AO 2×1.1)	ALLOW a named polluting gas IGNORE (idea of) ozone layer

		small quantities of fuel needed / (idea of) more energy per unit mass \checkmark fuel readily available \checkmark will not run out as fast (as fossil fuels) \checkmark to preserve fossil fuels \checkmark Disadvantage - Any one from: Radioactive/nuclear waste produced \checkmark security of transport of fuel / waste \checkmark expensive to build \checkmark danger of exposure to radiation \checkmark decommissioning is expensive \checkmark risk of accident (and after- effects)/uncontrollable (chain reaction) \checkmark non-renewable \checkmark		ALLOW (idea of) risk from terrorists ALLOW (idea of) explosion IGNORE just dangerous Examiner's Comments Most candidates gained at least 1 mark, usually for identifying a disadvantage of nuclear power. Poor communication skills were an issue for many candidates and vague answers such as 'no pollution', 'produces waste', 'produces more energy' and 'expensive' did not gain any credit.
		Total	2	
11	i	230 (V) √	1 (AO1.1)	
			(-)	
	ii	(Earth wire together with fuse) prevents user from getting electric shock (if there is a fault) √ Plastic case is an insulator (so earth wire not required) √	2 (AO2 × 1.1)	ALLOW metal case could cause electric shock if no earth wire / AW ALLOW idea of earth wire carries current to Earth / AW ALLOW prevents projector becoming live / AW ALLOW plastic case is not a conductor / does not conduct electricity/current ALLOW appliance is double insulated
	ï	prevents user from getting electric shock (if there is a fault) √ Plastic case is an insulator (so	2 (AO2 ×	/ AW ALLOW idea of earth wire carries current to Earth / AW ALLOW prevents projector becoming live / AW ALLOW plastic case is not a conductor / does not conduct electricity/current

<u> </u>	<u>г</u>	
Analysis of Fig. 18.1 and Fig. 18.2 AND		Disadvantages
AND An attempt to give a conclusion about the use of wind power There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Evaluation of the advantages and disadvantages of wind power		 Unreliable – when wind drops so does power output / turbines switched off if it is too windy Takes up lots of land Some people think they are unsightly/noisy Expensive to build AO3.1a Analyses information by interpreting graphs of power output and use Wind pattern/power generated does not follow demand Power generation is (always) below that of demand
Analysis of Fig. 18.1 and Fig. 18.2		 Demand peaks at 17.00, lowest at ~5.00 Peak demand is ~48000MW or Lowest demand is
OR Evaluation of the advantages and disadvantages of wind power AND		 ~27000MW Greatest power generation is ~11000MW or lowest power generation is ~5300MW Power generation fluctuates
An attempt to give a conclusion about the use of wind power		AO3.2b Analyses information to draw conclusions about use of wind power
ORAnalysis of Fig. 18.1 and Fig. 18.2ANDAn attempt to give a conclusion about the use of wind powerThere is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.Level 1 (1–2 marks) Evaluation of the advantages or disadvantages of wind powerOR Analysis of Fig. 18.1 or Fig. 18.2 OR An attempt to give a basic conclusion about the use of wind power		 Current wind power cannot meet the demand for the UK To meet the demand lots more wind turbines need to be built Even more land/sea will be taken up with wind turbines Expensive to build as so many wind turbines required There will still be some days when wind cannot meet the demand requirements There will need to be other power generation systems (examples given) We need to be able to store the energy generated
There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response		
worthy of credit. Total	6	

8.2 Powering Earth (H)

R =) 12 × 9.0 / 120 √