Physics on the Move (H)

1. A car travels at a speed of 70 mph (miles per hour).

1 mile is approximately 1600 metres.

Convert 70 mph into m / s (metres per second).

- A 2.6 m / s
- **B** 31 m / s
- C 112 m/s
- **D** 160 m / s

Your answer

[1]

2. Which row in the table shows realistic speeds?

		Speed (m / s)	
	Road cyclist	Gale force wind	Sound in air
Α	40	12	1000
в	6	24	340
С	20	6	760
D	15	55	250

Your answer

[1]

3. An adult on a bicycle travels at 8 m/s on a level road. She sees a hazard and applies her brakes using full force.

Estimate the force of the brakes.

A 5 N B 50 N C 500 N D 5000 N Your answer

[1]

[1]

4. A car accelerates from 0 to 60 mph (miles per hour) in about 9 seconds.

Use the relationship: 1 m/s = 2.24 mph

Estimate the acceleration for this car in m/s^2 .

A 1 m/s²

- **B** 3 m/s²
- **C** 7 m/s²
- **D** 15 m/s²

Your answer				
-------------	--	--	--	--

5. A student measures the time it takes for a bicycle to stop in an emergency.

She repeats the measurement to get three results.

The average time for her results is 2.72 s.

The first two results are 2.66 s and 2.60 s.

What is the value of her third result?

- **B** 2.66 s
- **C** 2.72 s
- **D** 2.90 s

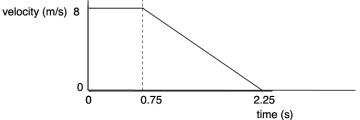
Your answer

[1]

6. A scientist uses different drivers to test the stopping distances of the same car.

Look at the results.

Driver	Speed (m/s)	Thinking distance (m)	Braking distance (m)
Α	8	6	6
В	16	13	24
С	32	24	96
D	16	12	22
E	8	5	6
F	32	30	120


Most of the drivers tested the car on a dry day, on a level road.

Which driver tested the car on an icy road?

Driver tested the car on an icy road.

7(a). The car takes 6 m to brake when moving at 8 m/s.

Look at the graph of the car as it starts to brake and then stopping.

Use the graph to show that the braking distance is 6 m.

(b). The table shows the stopping distances for a car.

Speed of car (m/s)	Thinking distance (m)	Braking distance (m)	Total stopping distance (m)
4	3	1.5	4.5
8	6	6	12
16	12	24	36
32	24		

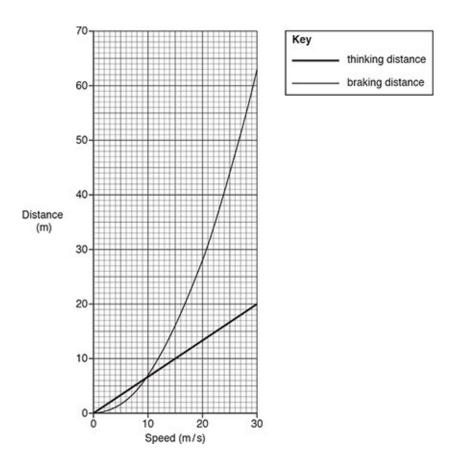
Use the data given to fill in the information missing at a speed of 32 m/s.

[1]

8 (a). A scientist uses different drivers to test the stopping distances of the same car.

Look at the results.

Driver	Speed (m/s)	Thinking distance (m)	Braking distance (m)
Α	8	6	6
В	16	13	24
С	32	24	96
D	16	12	22
E	8	5	6
F	32	30	120


Which driver has the **quickest** reaction time?

Driver has the **quickest** reaction time.

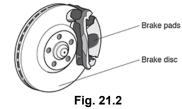
Calculate their reaction time.

Answer =	s [3]
(b). Give two drivers that have the same reaction time.	
Drivers have the same reaction	time.
Explain your answer.	
	[2]
(c). Driver B travels at 16 m/s on the road. The thinking distance is ⁻ distance is 24 m.	I3 m and the braking
Driver B now drives the car uphill at the same speed on the same r	oad.
How will driving the car uphill affect thinking, braking and stopping o	distances?
The reaction time will stay the same.	
Complete the sentences.	
The thinking distance will	
The braking distance will	
The stopping distance will	
	[2]

i. Use the graph to find the thinking distance at 24 m / s.

ii.

Thinking distance =..... m [1]


Calculate the **thinking time** at 24 m / s. Use your answer to **(i)** and the equation: distance travelled = speed × time Give your answer to **2** decimal places.

Thinking time =.....s [3]

(b). D	escribe how thinking distance varies with increasing speed.	
Use da	ta from the graph in your answer.	
		[2]
(c). Ho	w does the speed affect the kinetic energy and braking distance of the car?	
Use the	e graph in your answer.	
		[3]
(d).		
i.	State one factor that could increase thinking distance.	
1.	State one factor that could increase thinking distance.	
		[1]
ii.	Calculate the stopping distance at 15 m / s.	
	Use the graph to help you.	

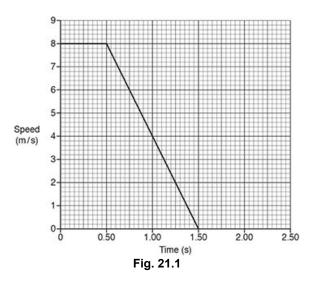
Stopping distance = m [2]

10(a). In the brakes of a car there a	re brake pads	and a brake disc, as
shown in Fig. 21.2 .		

When a car stops, energy transfers between stores.

The brake pads squeeze the brake disc and cause a friction force.

i. Explain how braking stops the car.


Include ideas about **energy stores** in your answer.

ii. High speed cars have ventilated brakes with air holes in the disc, as shown in Fig. 21.3.	[2]
Brake pads Ventilated brake disc Fig. 21.3	
The air holes allow more air to circulate around the disc.	
Suggest how these brakes can reduce braking distances.	
	[1]
(b). Driver P measures the reaction time of driver Q using a 30 cm ruler.	
Driver P drops a 30 cm ruler vertically and driver Q catches it.	
i. Explain how the ruler can be used to estimate reaction time.	
	[1]

ii. State one precaution they can use to get accurate results.

(c). Fig. 21.1 is a speed-time graph for car P.

The driver of car ${\bf P}$ reacts to a traffic light at time = 0.00 s, then presses the brakes at time = 0.50 s.

i. The braking distance is the same size as the thinking distance.

Explain how the graph in Fig. 21.1 shows this.

[1]

- ii. Add another line to the graph in **Fig. 21.1** to show the journey of car **Q**.
 - Car **Q** is travelling at 8 m / s.
 - The driver of car **Q** reacts, then presses the brakes after 0.75 s.
 - Car Q decelerates at the same rate as car P.

[2]

END OF QUESTION PAPER