Work Done (F)

1. A motor has an input energy of 800 J. The useful output energy is 500 J.

What is the wasted energy?

A 300 J

B 500 J

C 800 J

D 1300 J

Your answer

[1]

2. A wooden block has a mass of 2 kg and a specific heat capacity of 2000 J/kg °C.

Calculate the energy needed to raise its temperature by 6 °C.

Use the equation:

Change in thermal energy = Mass × Specific Heat Capacity × Change in Temperature

A 1 200 J

B 2 400 J

C 12 000 J

D 24 000 J

Your answer

[1]

3. A student wants to find out which heater produces the largest temperature rise.

Look at the results she collects and the calculations she makes.

Heater	Starting temperature (°C)	Finishing temperature (°C)	Change in temperature (°C)
A	18	28	20
В	18	36	16
С	18	44	26
D	18	51	23

Which heater has results that are correctly calculated?

Your answer

[1]

4(a). Alex has two radiators in her home. They are filled with 10 kg of different liquids.

The table below shows information about oil and water.

Material	Specific heat capacity (J/kg°C)	Freezing point (°C)	Boiling point (°C)
Oil	1 700	-24	250
Water	4 200	0	100

Alex's conservatory can be very cold.

Sometimes it can get as low as -6 °C.

Alex thinks that the oil radiator may be better for the conservatory.

Suggest why.

.....[1]

[2]

(b). Radiators in a home have a 'cut-out' which prevents them getting hotter than 60 °C. Suggest why. _____ _____[1] (c). Alex does a calculation. She knows that the oil heater produces 800 J of energy each second. Calculate the energy produced by the oil heater in 10 minutes. answer:J [2] (d). i. Alex wants the oil heater to heat up by 40°C. How much energy is needed? Show your working. _____ answer:J ii. She supplies enough energy to heat up the oil radiator by 40°C but it only heats up to 32°C. Suggest two reasons why. _____ _____ _____[2] 5. Explain how energy is transferred and lost from a ball when it bounces.

[2]

6. A lorry has a mass of 3500 kg. It travels at a speed of 30 m/s. Use the equation: Kinetic Energy = $0.5 \times Mass \times Speed^2$

Calculate the kinetic energy of this lorry.

- Α 10 500 J в 52 500 J С 1 575 000 J
- D 3 150 000 J

Your answer

7.

Seatbelts in cars are made of a wide material that stretches in a crash.

i. Explain why it is important that the material is wide.

[1]

8. Fig. 20.1 shows thinking, braking and stopping distances for the same car travelling at different speeds.

Speed (m/s)	Thinking distance (m)	Braking distance (m)	Stopping distance (m)
8	6	6	12
16	12	24	36
32	24	96	120

Fig. 20.1

* Explain why the stopping distances are different for each speed in Fig. 20.1.

 9(a). A student wants to investigate how a ball bounces.

He drops the ball from different heights and measures the bounce height each time.

He calculates the ratio bounce height / drop height.

The table shows his results.

Drop height (cm)	Bounce height (cm)	Bounce height / drop height
100	70	0.70
80	64	0.80
60	54	0.90
40	40	1.00
20		

The student predicts the ratio bounce height / drop height to be 1:1 when the drop height is 20 cm.

i. Suggest why he has made this prediction.

______[1]

ii. Use ideas about energy to explain why this prediction cannot be correct.

.....[1]

(b). Suggest two improvements to his experiment.

(c). The mass of the ball is 60 grams.

i. Calculate the mass of the ball in kg.

Mass = kg [1]

ii. Calculate the potential energy of the ball when it is 0.80 m above the ground.

Use your answer to (i) and the equation:

potential energy = mass × height × gravitational field strength

Gravitational field strength = 10 N / kg

Potential energy = J [2]

10. *A student does an experiment using 0.2 kg of water.

Here is some information from the experiment:

The aim is to find the energy needed to raise the temperature of the water by 20 °C.

An electrical heater is used to heat the water. The temperature of the water increases by 20 °C.

The specific heat capacity of water is 4 200 J / kg °C.

Describe how the student should carry out the experiment, including the equipment used.

In your answer calculate the change in internal energy for the water.

You may include a diagram in your answer.

[6]

11 (a). A different TV works with a 12.0 V battery. It has a current of 3.19 A.

Calculate the power rating of the TV.

Power = W [3]

(b). A TV has a power rating of 0.2 kW.

Calculate the energy transferred, in kWh, if the TV is switched on for 4 hours.

Energy transferred =..... kWh [3]

12. The graph shows thinking and braking distances for a car at different speeds.

How does the speed affect the kinetic energy and braking distance of the car?

Use the graph in your answer.

_____[3]

END OF QUESTION PAPER