Mark scheme – Work Done (F)

Qu	esti	ion	Answer/Indicative content	Marks	Guidance
1			A √	1 (AO1.1)	
			Total	1	
2			D √	1 (AO 2.1)	Examiner's Comments Candidates were required to carry out a simple substitution into a given equation were generally answered well.
			Total	1	
3			C √	1 (AO 2.2)	Examiner's Comments About two-thirds of the candidates got this question correct: the commonest wrong answer here was A, presumably looking at the symmetry in the bottom part of the diagram.
			Total	1	
4	а		Oil will not freeze (as easily as water) / ORA (1)	1	
	b		Reduces risk of burns to people / children (1)	1	
	с		Time conversion: 10 × 60 = 600 seconds (1) 800 × 600 / 480 000 (J) (1)	2	ALLOW 480 (kJ)
	d	i	Substitute into formula for specific heat capacity / 10 × 40 × 1 700 (1) 680 000 (J) (1)	2	ALLOW 680 (kJ)
		ii	Any two from: Some energy used to heat the radiator case (rather than the oil) (1) Energy passed from oil to air in room / oil undergoes cooling whilst heating up (1) Energy is dissipated to surroundings (1)	2	

		It is not 100% efficient at transferring energy (1)		
		Total	8	
5		Any 2 from: (Moving) ball has KE (1) Ball heats up (1) Some energy lost as heat to surroundings / moving air / particles in floor (1)	2	
		Total	2	
6		C √	1 (AO 2.2)	Examiner's Comments Candidates were required to carry out a simple substitution into a given equation were generally answered well. The most common error was not squaring the speed and choosing distractor B.
		Total	1	
7	i	Reduces <u>pressure</u> / spreads the <u>force</u> / AW √	1 (AO 1.1)	Examiner's CommentsMany candidates found it difficult to use appropriate technical language in their answers to this question (for example, force and pressure). Many candidates wrote vague responses such as 'it would cover more of the body' without explaining why this was important. Higher ability candidates used specific technical language such as 'reducing the pressure' or 'spreading the force'.Image: Comment Com
	ii	Absorb energy (in a crash) √	1 (AO 1.1)	ALLOW higher level answers: eg. Reduces force / acceleration

			E.g. Increases time / distance to stop
			Examiner's Comments Higher ability candidates realised that the material was stretchy to absorb energy in a crash. Other responses referred to more generalised reasons such as allowing seatbelts 'to fit around different sized people.' Some candidates described the seat belt material as 'having a little give' or 'movement' without explicitly explain how this would increase time, reducing the rate of deceleration and thus the force exerted on the passenger.
	Total	2	
8	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Explains quantitatively why the stopping distances are different for each speed in the table in terms of braking distance and thinking distance. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Explains qualitatively why the stopping distances are different for each speed in the table in terms of braking distance or thinking distance or thinking distance increasing with speed from the table There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	6 (AO 2 x 1.1) (AO 2 x 2.1) (AO 2 x 3.2b)	 AO1.1a Demonstrates knowledge and understanding of thinking, braking and stopping distance Thinking distance is the distance the car travels while the driver reacts Braking distance is the distance travelled while the brakes are applied Stopping distance is thinking distance + braking distance AO2.1 Applies knowledge and understanding of thinking, braking and stopping distance in relation to the details in the table Increasing the speed, increases the thinking distance Increasing the speed, increases the braking distance Increasing the speed, increases the stopping distance Increasing the speed, increases the stopping distance Thinking distance Increasing the speed, increases the stopping distance AO3.2b Analyses information to make judgements and draw detailed conclusions from table Thinking distance is directly proportional to the speed When speed doubles, thinking distance doubles Braking distance is proportional to speed2 When speed doubles, braking distance quadruples

Level 1 (1–2 marks)	Examiner's Comments
States basic ideas	This question gave candidates the
about thinking distance	opportunity to apply their knowledge and
/ braking distance /	understanding of stopping distances. The
stopping distance OR	question is deliberately set to be open ended
identifies variation of	so that candidates had the opportunity of
thinking distance /	structuring their answers logically.
braking distance /	
stopping distance with	Higher ability candidates explained that the
speed	stopping distance was equal to the sum of
There is an attempt at a	the thinking distance and braking distance
logical structure with a	before stating that the stopping distances
line of reasoning. The	increased with speed. Often candidates
information is in the most	demonstrated the change in stopping
part relevant.	distance using the data from the table.
part relevant.	
0 marks - No response or	For the highest marks, candidates were
no response worthy of	expected to analyse the data quantitatively
credit.	from the table. A few candidates used part (a)
	and stated that thinking distance doubled with
	speed and carried out a similar analysis for
	braking distance, stating that as speed
	doubled, braking distance quadrupled.
	Common misconceptions included thinking
	time increasing with speed, drivers being
	under greater pressure at high speed,
	braking forces increasing with speed. Other
	candidates discussed factors that affected
	thinking distance and braking distance rather than using the data in the table.
	Exemplar 2
	(c)* Explain why the stopping distances are different for each speed in Fig. 20.1.
	<u>chen adving</u> at 8 ys the stinging
	. thinking and breaking distance are equal, 6.4.
	e when driving at 16 mis the shinting
	otsionce double but it thates longer to preak as your gleing on a faster 12
	Speed.
	· Some opplies to 32 H/S as it takes
	<u>90M</u> longer than 8 mls to stop, <u>Hearing the Stopping distance totals</u>
	120 м.
	This is a four mark, Level 2 response. The
	candidate has calculated the stopping
	distance for each speed and provided a
	limited analysis. They have made good use
	of mathematical expressions to show that
	stopping distance is equal to the product of
	thinking and breaking distance. The
	information presented is relevant, however
	there are limited links made between the
	bullet points. To progress to a Level 3
	response the condidate could have added a
	response the candidate could have added a short introduction and a final bullet point

					linking the analysis at each speed together in a summary sentence.
					Exemplar 3
					(c) Explain why the scopping distances are different for each speed in Fig. 20.1. At higher speechs the thicking and broking historie interess, I a the speech deallow. We thicking distance doubles and the broking distance quadropals. The Which areas the acopping distances increases because the cor is towelling at a higher speech canazing is well towel goother in that thicking time which steps the same (the broking distances increases into a higher a longer broking distance increases into a higher a longer at a higher account they are in the speech in that thicking time which steps the core of a longer a longer consent they are in table a longer gence and time to character to a well acted is there is the graph. Ket this aquests to a nucle toget a longer is stepping tow because of these two gates , where caused by the digreest speech.
					This is a six mark Level 3 response. This is very clear analysis of the data in the table that is linked together in a clear logical structured way. Although the candidate has not annotated their script (except in their response to (a) it is clear that they have processed the data in the table. They have described the complex mathematical relationships (for example 'if the speed doubles the thinking distance doubles and the breaking distance quadruples') although it would have been easier to present this conclusion numerically.
			Total	6	
9	а	i	Any one from: Ratio of 1:1 at a height of 40 cm √ ratio (seems to) increase by 0.1 when height decreases by 20 cm (until	1 (AO3.2a)	ALLOW when drop height was 40 cm, bounce height was the same / bounce ratio coming closer to 1:1 each time / bounce height cannot be higher than drop height <u>Examiner's Comments</u> Many candidates answered this question correctly by referring to the previous bounce
			ratio is 1:1) / AW √		height being the same. This question again required candidates to interpret data from a table.
					ALLOW ball will lose energy (when it hits the ground)
			Some of the energy from the KE store is		Examiner's Comments
		ii	transferred to other energy stores as ball hits the ground AW √	1 (AO2.1)	There was a clue in the question regarding energy. It was anticipated that candidates would understand that there is likely to be energy losses both as the ball travels through the air and as it bounces. It was hoped that there would be reference to energy being

				transferred from the kinetic energy store to other energy stores as the ball bounces.
				ALLOW second person to read bounce height / idea of video camera and play back
þ		Any two from: Lower head to read bounce height / take bounce height readings at eye level / AW √ Take multiple readings and <u>average</u> them √ Take readings at other intervals (eg. 90, 70, 50) √	2 (AO2×3.3b)	ALLOW drop from greater heights Examiner's Comments This was another question which required candidates to consider experimental procedures. Many candidates suggested taking other readings. Some candidates tried to suggest methods of improving the measurement of the bounce height but often the explanations were vague and lacked the necessary detail. AfL
				Candidates should be encouraged to consider improvements to experiments that are carried out as part of their practical course.
		(Mass = 60 ÷ 1000 =)		Examiner's Comments
с	i	(Mass = 00 + 1000 =) 0.06 (kg) √	1 (AO1.2)	The majority of the candidates correctly answered this question. Many candidates who did not gain this mark wrote 0.6 kg.
				ALLOW ECF from (c)(i)
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.48 (J) award 2 marks	2 (AO2×2.1)	E = (c)(i) × 10 × 0.8 \checkmark E = answer to (c)(i) × 8 \checkmark ALLOW E = 60 × 10 × 0.8 = 480 (J) for one mark
		Energy = 0.06 × 0.8 × 10√ Energy = 0.48 (J)√		Examiner's Comments This was well answered. Candidates should again be encouraged to show their working. There should be clear substitution of the numbers into the given equation. The advantages of this method are that

	Total Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Detailed description of the procedure and the measurements (including a labelled diagram). AND Correct calculation of the change in thermal energy. There is a well-developed	7	candidates will then be able to use their calculator without having to look for the numbers and easily be able to check their answer later. It also enables candidates to gain one mark if there is an error in the calculation. AO3.3a Analyse information and ideas to develop experimental procedures Iliquid placed in beaker heater immersed in liquid heater connected to power supply insulation arranged to reduce heat loss thermometer instrument(s) to determine energy e.g. stopwatch, circuit AO2.2 Apply knowledge and understanding of scientific enquiry, techniques and procedures - measurements Explanation of obtaining mass of
			 liquid placed in beaker
	scheme for guidance on how to mark this question. Level 3 (5–6 marks) Detailed description of the procedure and the measurements (including a labelled diagram). AND Correct calculation of the change in thermal energy.		 heater immersed in liquid heater connected to power supply insulation arranged to reduce heat loss thermometer instrument(s) to determine energy e.g. stopwatch, circuit AO2.2 Apply knowledge and understanding of scientific enquiry, techniques and procedures - measurements Explanation of obtaining mass of 200 g Initial temperature measured Temperature rise / change / temperature after measured Method to determine the energy e.g.
10	Level 2 (3–4 marks) Detailed description of	6(AO2×3.3a)(AO2×2.2)(AO2×2.1)	use of joule meter / E = ItV method / power of heater and time.
	the procedure and the measurements (with a diagram). OR		AO2.1 Apply knowledge and understanding of scientific ideas to calculate change in thermal energy • use of E = m x c x t
	Description of the procedure and the measurements (with a diagram). AND		 use of E = m x c x t E = 0.2 × 4 200 × 20 E = 16 800 J
	Correct calculation of the change in thermal energy.		Examiner's Comments This question gave candidates the
	There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks)		opportunity to apply their knowledge and understanding of practical procedures related to specific heat capacity. The question is open ended so that candidates have the opportunity of demonstrating their knowledge as well as having the opportunity to structure their answers logically.

Basic description of the	This question stated "You may include a
procedure and the	diagram in your answer." A diagram of the
measurements.	experimental arrangement would have been
OR	very helpful. Many candidates did not include
Correct calculation of the	a diagram. The advantage of drawing a
change in thermal	diagram is that it will also assist candidates in
energy.	their procedures. Diagrams should be
onorgy.	labelled. Several candidates drew diagrams
There is an attempt at a	with a beaker, heater and thermometer.
There is an attempt at a	
logical structure with a	Some candidates incorrectly drew diagrams
line of reasoning. The	of Bunsen burners heating water.
information is in the most	
part relevant.	The question also required candidates to
	calculate the change in internal energy for the
0 marks	water. Higher ability candidates stated the
No response or no	equation from the data sheet and then clearly
response worthy of credit.	substituted the numbers from the question
	before calculating the answer. Candidates
	who did not calculate the change in internal
	energy correctly often did not include an
	equation.
	-
	The question gave candidates the opportunity
	to discuss practical procedures. Again,
	several candidates used insulation and
	adding a lid. Some discussed stirring the
	water. A circuit diagram showing how the
	electrical heater was connected would have
	been useful.
	For the highest marks, it was expected that
	candidates would explain how a mass of 0.2
	kg was measured and how the energy could
	be measured experimentally. Some
	candidates did mention the use of a
	stopwatch.
	Exemplar 3
	You may lock the a disorder in your answer
	Neole C
	moss x SH(X change Paters).
	0.2 × 4200 × 20 = 16800 3 Justan Water
	Section Core States FED
	The student should accurately neasure
	sof the water, then Dovi into Beater. Then
	put the heater into the water and the
	town otherwise it will making the
	touch atternise it will making the test inaccurate. Then time the experiment and find cut how much the the
	heater gives out a second. Then heater the water 70°C and stop
	brething and furn off heater Marke
	sure to read themeneration 10
	This candidate has drawn a diagram showing
	the container is insulated with a heater and
	thermometer.
	The calculation is clearly shown using an

				appropriate equation.
				The candidate then describes the experiment; this could have included much more detail such as explaining how the water would be measured. This candidate hints at an energy determination when the energy per second of the heater is mentioned. The candidate also gives some extra detail when suggesting that the heater and thermometer should not touch. The description of the procedure lacked appropriate detail but the calculation was
				correct. The information given by the candidate was relevant and was presented with some structure. Overall this response was assessed as being a Level 2 response worth four marks.
		Total	6	
11	а	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 38.28 (W) award 3 marks Recall (Power =) potential difference x current \checkmark 12 × 3.19 \checkmark (P =) 38.28 (W) \checkmark	3 (AO 1.2) (AO 2.1) (AO 2.1)	ALLOW correct equation in any form ALLOW 38.3 (W) or 38 (W) Examiner's Comments This question again required candidates to recall an equation, substitute numbers and calculate an answer. Candidates who used this method scored well. Again, a significant number of candidates wrote both answers which multiplied and divided the numbers.
	b	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.8 (kWh) award 3 marks Recall (Energy transferred =) power × time √	3(AO 1.2) (AO 2.1) (AO 2.1)	ALLOW correct equation in any form ALLOW 200 x 4 or 200 x 4 x 60 x 60 or 200 x 14400 or 200 x 4 x 60 or 0.2 x 4 x 60 x 60 or 0.2 x 14400 or 0.2 x 4 x 60 for one mark ALLOW 800 or 2 880 000 or 2880 or 48 000 or 48 for two marks

				Examiner's Comments
		(Energy =) 0.8 (kWh) √		Candidates needed to recall the equation, substitute in the numbers and calculate the answer. Few candidates wrote the equation.
				Candidates should be encouraged to look at the unit on the answer line. In this question the unit is kW × h which should then give the hint that it is power measured in kW multiplied by time measured in hours.
				A large number of candidates took the numbers and multiplied them together and also divided them giving possible answers of 0.8 kW h (correct) and 20 kW h (incorrect) – this did not score any marks since the candidate is not demonstrating that they understood the physics. Conflicting physics was not credited.
				Exemplar 6
				$0.2 \times 4 = 0.8$ $\frac{24}{0.2} = 20 \text{ KWh}$ Energy transferred =
				This candidate has written $0.2 \times 4 = 0.8$ which would have scored all three marks. However, the candidate then states that 4 / 0.2 = 20 kWh which incorrect physics and means that the question will not gain credit.
				This candidate could have gained one mark by writing the equation that needed to be recalled. By writing this equation and then substituting in the numbers, the candidate may not have needed to possibly guess whether to multiply or divide the numbers.
		Total	6	
12		Maximum 2 marks from: Higher speed increases braking distance √ BUT Double speed quadruples braking distance / braking distance is (directly) proportional to the speed squared AW √√	3 (AO 2.1) (AO 3.1a x2) (AO 2.1) (AO 3.1a x2)	ALLOW numerical values from graph, e.g. at 10 (m/s), bd = 7.5 (m) but at 20 (m/s) bd = 30 (m). ALLOW numerical values from graph, e.g. at 10 (m/s), bd = 7.5 (m) but at 20 (m/s) bd = 4×7.5 (= 30m) for 2 marks <u>Examiner's Comments</u>
		Maximum 2 marks from: (Idea that) higher speed (car has) more KE √		Many answers to this question were vague. This question again required candidates to indicate the direction of the change in speed, e.g. as the speed increases. A small minority

7.1 Work Done (F)

proportional to the speed squared / AW √	graph to show that as the speed doubled the braking distance and kinetic energy quadrupled.
BUT Double speed quadruples KE / KE is (directly)	of candidates realised that both the kinetic energy and the braking distance increased with increasing speed. Very few used their