Newton's Law (F)

1. An object moved 20 cm with a force of 20 N.

Use the equation: work done = force × distance

Which is the correct calculation of work done?

- A 0.4 J
 B 4.0 J
 C 40 J
- **D** 400 J
- Your answer

[1]

2. Which of the following is Newton's Third Law?

- **A** For every action there is an equal and opposite reaction.
- **B** What goes up must come down.
- **c** The acceleration that a resultant force produces depends on the size of the force and mass of the object.
- D An object will continue to stay at rest or move with uniform speed unless a force acts on it.

Your answer

[1]

3. A runner has a mass of 80 kg and moves at a speed of 5 m / s.

Calculate the kinetic energy of the runner.

Use the equation: kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$

- A 200 J
- **B** 1000 J
- **C** 2000 J
- **D** 40 000 J

Your answer

[1]

4. The acceleration of a car is 2 m / s^2 . The mass of the car is 1000 kg.

Calculate the resultant force on the car.

- Α 20 N
- в 200 N
- С 2000 N
- D 20 000 N

Your answer	[1]

5. Four cars of the same mass are shown here.

[1]

6. Which sentence is the definition of the power of a machine?

- **A.** The amount of work done by the machine.
- B. The efficiency of the machine.C. The number of joules of energy the machine requires to work.
- **D.** The rate at which energy is transferred by the machine.

Your answer

[1]

7. A firework rocket has a resultant force of 2 N acting on it.

It has a mass of 0.1 kg.

What is the acceleration of the firework rocket?

- **A.** 0.2 m/s²
- **B.** 0.5 m/s²
- C. 20 m/s²
 D. 200 m/s²

Your answer

[1]

8(a). Four students investigate the idea of work done.

work done = force × distance

Look at their results.

Student	Force (N)	Distance travelled (m)
Α	100	5
В	50	10
С	120	12
D	40	4

Use calculations to show which student does the most work.

 [2]

(b). Which two students do the same amount of work?

[1]

(c). State two reasons why it is important to repeat measurements in any experiment.

......[2]

(d).	. Student C takes 0.5 minutes to push the trolley.	
	How much power do they use?	
	Show your working.	
		answer: W [4]
9. A ca	ar takes 6 m to brake when moving at 8 m/s.	
Look a	at the graph of a car travelling at 8 m/s, starting to brake and the	en stopping.
	velocity (m/s) 8	
	0 0 0.75	2.25
		time (s)
i.	Calculate the acceleration of the car during braking.	
	Show your working and state the unit.	
	answer:	unit[4
ii.	The car has a braking force of 5000 N.	
	Calculate the work done by the brakes on the car.	
	answer:	J [2]

Write down **one** type of force involved when objects interact.

_____[1]

(b). A book rests on a table.

Draw a free body force diagram to show the forces acting on the book.

Use arrows to represent the forces.

ii. A car accelerates from 5 m/s to 25 m/s in 4 seconds.

Calculate the acceleration of the car.

Use the equation: Acceleration = Change in speed ÷ Time taken

Answer = m/s² [3]

12. Look at the information about different electric motors.

Electric motor	Energy input per hour (J)	Useful energy output per hour (J)	Energy 'wasted' per hour (J)
Α	72 000	60 000	
В	54 000	36 000	
С	18 000		3 000
D		48 000	12 000
E	54 000	48 000	

i. Calculate the energy input per hour in J for electric motor $\boldsymbol{D}.$

	Answer =	J [2]
ii.	Which electric motor has the lowest 'wasted' energy in one hour?	[1]
iii.	Which electric motor has the highest 'wasted' energy in one hour?	[1]
iv.	Describe how energy is 'wasted' in an electric motor.	
		[1]
V.	Suggest how this 'wasted' energy can be reduced in an electric motor.	
		[1]

13. This question is about force, mass and acceleration.

A roller coaster car moves down a slope with an acceleration of 5 m/s².

The force on the roller coaster car is 4000 N.

Calculate the mass of the roller coaster car.

Answer = kg [2]

14(a). A tall building needs a lift to move people from one floor to another.

The builder has a choice of three different lifts.

Each lift takes a different amount of time to move between the two floors.

Look at a bar chart of the time taken for each lift.

i. Lift C takes 12 s to move between the two floors.

Draw a bar for lift **C** on the bar chart.

ii. Calculate the mean time of the three lift journeys.

Mean = s [2]

[1]

iii. Explain which lift uses the most power.

		[2]
(b).		
i. One lif	ift uses 50 000 J for a 12 s journey.	
Cal	alculate the power of the lift.	
Giv	ve your answer to 1 decimal place.	
	Dowor -	\\/ F4]
	rowei –	vv [4]
ii. When	the lift is broken the stairs are used.	
Cal	alculate the work done when a 750 N person climbs a distance of 4 m.	
	Work done =	J [3]
15(a) Th	be mass of a toy car is 5 kg and it has an acceleration of $4 \text{ m}/\text{s}^2$	
: .		
1. (Calculate the force needed to accelerate the toy car.	
l	Use the equation: force = mass × acceleration	
	Force =	N [2]
ii (Suggest why the actual force needed would be more than in part (i)	
п. х		
		[1]

(b).

A toy car requires a constant force of 30 N to move it along a surface.
 Calculate the work done on the car when it moves a distance of 50 m.
 Use the equation: work done = force × distance

Work done = J [2]

ii. Calculate the power output of this toy car if the work is done over 75 seconds.Use your answer from (i).

Power = W [3]

END OF QUESTION PAPER