Question Number	Answer	Acceptable answers	Mark
1(a)(i)	substitution (1) work done = 84 x 0.25 evaluation (1) 21(J)	Full marks for correct answer even if no working is evident	(2)

Question	Answer	Acceptable answers	Mark
Number			
1(a)(ii)	21 J	Ecf from (a)(i)	(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(iii)	substitution (1) KE = $\frac{1}{2}$ x 27 x (2.3) ² evaluation (1) = 71.4 (which is approx 71)	V=2.29 gains two marks Reverse argument which shows that $V = \sqrt{5.3}$ gains two marks	(2)

Question	Answer	Acceptable answers	Mark
Number			
1 (a) (iv)	В		
			(1)

Question Number		Indicative Content	Mark
QWC	*)	An explanation linking some of the following points • kinetic energy varies during swing • kinetic energy maximum at bottom of swing • kinetic energy minimum at top of swing • gravitational potential energy(gpe) varies during swing • gpe maximum at top of swing • gpe minimum at bottom of swing • (continuous) interchange of KE and gpe • total amount of energy is constant during one swing • over a number of swings max KE and max PE decreases • energy is dissipated/'lost' to surroundings • because of air resistance / friction • amplitude/size of swings decrease (as energy 'lost' to surroundings)	(6)
Leve	Mark	ignore references to momentum Descriptor	
1	0	No rewardable content	
1	1 - 2	 a limited explanation which states some facts e.g. (max) Kinetic energy decreases over time. KE will transfer to 0 or KE increases and decreases over one swing. The height which swing reaches gets less over time. the answer communicates ideas using simple language and limited scientific terminology spelling, punctuation and grammar are used with limited acceptable. 	the uses curacy
2	3 - 4	 a simple explanation with links between facts; either over of period of oscillation or over several periods of oscillations. Kinetic energy decreases as he gets higher and the GPE increase. There is a continuous interchange of KE and gpe as he swings. or KE is gradually transferred to heat so swing rises to a slightly height each time. the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriat spelling, punctuation and grammar are used with some accordinates. 	ses. ower clarity ely
3	5 - 6	 a detailed explanation with links between facts over one poscillation and over several periods of oscillations e.g. kinetic energy is at a maximum at bottom of swing There is continuous interchange of KE and gpe. KE (and gpe) reduce number of swings as energy is dissipated to the surroundin to friction. the answer communicates ideas clearly and coherently used range of scientific terminology accurately spelling, punctuation and grammar are used with few error 	eriod of s a e over a gs due

Question number	Answer	Mark
2(a)(i)	В	(1)

Question number	Answer	Mark
2(a)(ii)	A	(1)

Question	Answer	Mark
number		
2 (b)(i)	substitution into correct equation (1)	
_(5)(.)	= 1.9 × 10.0 × 9.0	
	answer (1)	
	171 (J)	
	(which is about 170 J)	
	Answer must be shown to	
	3 significant figures	(2)

Question number	Answer	Additional guidance	Mark
2 (b)(ii)	rearrangement (1) (useful energy transferred) = efficiency × total energy	award full marks for correct numerical answer without working	
	supplied	accept (useful energy transferred) = 170 × 0.7	
	substitution (1) = (70 × 170)÷100	OR = 171 × 0.7	
	answer (1) 119 (J)	accept alternative answer from 171 (J) i.e. 120 (J)	(3)

Question number	Answer	Mark
2(c)	В	(1)

Question number	Answer	Mark
2 (d)	 An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (2 marks): the coil contains wires which have a resistance (1) and current in the wire is due to movement of electrons through (close-packed) lattice of positive ions (1) hence collisions between electrons and ions in the lattice transfer energy from electrons to the lattice (causing the temperature of the wires/coil to rise) (1) 	(3)

Question number	Answer	Mark
3 (a)	С	(1)

Question number	Answer	Mark
3(b)(i)	change in GPE = mass × gravitational field strength × change in vertical height	(1)

Question number	Answer	Additional guidance	Mark
3 (b)(ii)	transformation (1)		
	$h = \Delta E \div mg$	accept use of $g = 9.81$	
	substitution (1) $h = 39000 \div (580 \times 10)$ evaluation (1) 6.7 (m)	accept 6.72 accept 6.85 (from g = 9.81)	(3)

Question number	Answer	Additional guidance	Mark
3(c)	An answer that combines the following points of application of knowledge and understanding to provide a logical description: work is done against friction (1) energy is stored in another specified way (1)	ignore references to friction as energy store acceptable stores are: KE of water thermal energy of water thermal energy of air (G)PE of water	(2)

Question	Answer	Acceptable answers	Mark
Number			
4 (a)(i)	D the spring has more elastic		
	potential energy than the		
	weight has kinetic energy		(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	A description including three from	care should be taken not to award marks for contradictory examples Starting point for description does not matter Ignore sound energy	
	MP1 Elastic potential energy /EPE (in stretched spring) (1)		
	MP2 (EPE is) transferred to KE (initially) (1)	EPE becomes/goes to KE (initially)	
	MP3 change from KE to GPE or vice versa(1)		
	MP4 (correct idea of) energy changes continuing		
	MP5 {total mechanical energy /kinetic +potential energy} decreases (continuously) (1)		
	MP6 (Eventually all is transferred to) {thermal/heat} (energy) (1)	condone amplitude decreases to zero KE or PE 'lost' to surroundings	(2)
			(3)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	B increase the efficiency of the motorcycle		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	MP1 (bump produces) relative motion (1)	coil moves round magnet/magnet moves {into/out of} coil / coil {cuts / moves across} magnetic field ignore magnets slide inside a coil (see stem)	
	MP2 (motion between magnet and coil) {induces / generates} voltage (1)	electromagnetic induction condone {induces / generates } {current/electricity} ignore (see stem)	
		electrical energy provides / produces	(2)

Question Number	Answer	Acceptable answers	Mark
4 (b)(iii)	An explanation linking		
	MP1 {more/frequent} bumps (1) (idea of shorter time / increased frequency)	idea of up and down for bump (coil / magnets) move up and down {faster / more often}	
	MP2 (bigger bumps produce) bigger amplitude / move more up and down (idea of bigger size) (1)	(coil/magnets) move {further/higher/bigger distance} (up and down)	
	MP3 (so) {induced voltage /voltage generated} is larger (1)	{induced current/current generated} is larger electromagnetic induction gives more voltage/current	
		condone more electricity/electrical energy is {induced / generated}	
		allow once for MP1 (if MP1 or MP2 is not scored): 'bumpier' 'go in and out more'	
			(3)

(Total for Question 3 = 10 marks)