lonising radiations

1	lonising	radi	ations are emitted by unstable nuclei.		
	(a) (i)	Wł	nich particle has the same mass as but opposite charge to a β^+ particle?		
		Pu	t a cross (⊠) in the box next to your answer.	(1)	
	\times	A	electron	(1)	
	\bowtie	В	positron		
	\boxtimes	c	proton		
	\times	D	neutron		
	(ii)	Su	ggest why a beta particle will travel further in air than an alpha particle.	(2)	
	(b) Co	mp	ete the sentence by putting a cross ($oxtimes$) in the box next to your answer.		
Following the radioactive decay of a nucleus, the nucleus might undergo some rearrangement, losing energy as					
	\bowtie	A	gamma radiation	(1)	
	\times	В	a proton		
	\bowtie	C	a neutron		
	\times	D	an X-ray		

(c) So	me unstable nuclei decay by emitting eta^- radiation.	
	(i)	Describe the process of $\beta^{\scriptscriptstyle -}$ emission.	(3)
	(ii)	Explain what happens to the mass number and the atomic number of a nucleus when $\beta^{\scriptscriptstyle -}$ emission occurs.	(3)

Nuclear energy

2 Electricity is generated in a nuclear power station. The diagram shows the first stages in this process.

(a)	The thermal energy released in the reactor is used to generate steam.	
	Describe how the steam is used to generate electricity.	(2)

(b)	Energy is released by a nuclear chain reaction.	
	Describe how the fission of a uranium-235 nucleus can start off a chain reaction. You may draw a diagram to help with your answer.	
		(3)

(One of the products of the fission of uranium-235 is barium-142.	
	Which of these could be a product of the same reaction?	
	Put a cross (☒) in the box next to your answer.	(1)
	■ A krypton-91	(1)
	■ B krypton-95	
	□ C krypton-98	
	D krypton-100	
(Barium-142 emits beta radiation. Beta radiation is ionising.	
	Explain what happens when beta radiation ionises.	(2)
(A fusion reaction does not have radioactive products. However, it needs large amounts of energy to make it happen.	
	Explain why large amounts of energy are needed to make a fusion reaction	
	happen.	(2)

(Total for Question 4 = 10 marks)

Power from the nucleus

3	The fu	el ir	a nuclear power station is an isotope of uranium.	
	(a) Th	mbol for a nucleus of this uranium isotope is $^{235}_{92}$ U.		
	(i)	Нс	w many protons are there in a nucleus of this isotope?	
		Pu	t a cross (\boxtimes) in the box next to your answer.	(1)
	×	A	92	(1)
	\times	В	143	
	×	C	235	
	×	D	327	
	(ii)	Na	me another particle in a nucleus of this isotope.	(1)
	(b) Nu	ıcle	ar fission is the reaction that happens in a nuclear power station.	
	Ex	plai	n what happens when nuclear fission occurs.	
				(2)
	(c) Co	ntro	ol rods are used in the nuclear reactor.	
	Ex	plai	n how these rods stop the nuclear reaction from getting out of control.	(2)
				(-)

(Total for Question 2 = 8 m			
	You may draw a diagram to help with your answer.		(2)
(d)	Describe how the thermal energy produced by the reproduce electricity.	nuclear reaction is used to	

Nuclear particles and reactions

4 (a) The diagram represents an atom of beryllium (Be).

(i) State the name of the particle labelled **X**.

(1)

(ii) Which of these is the correct symbol for this nucleus of beryllium? Put a cross (⋈) in the box next to your answer.

(1)

$$\times$$
 ρ

(iii) Explain how a beryllium atom can become a positive ion.

(2)

(b) Nuclear fusion is one type of nuclear reaction. Nuclear fusion reactions release energy in the Sun.

Describe what happens during nuclear fusion.

(2)

P	(Total for Question 5 = 12 ma hysicsAndMathsTutor.com	IrKS)
	/T-t-1 f Oti F 40	ulsa)
		(6)
	You may draw a labelled diagram to help with your answer.	(6)
	Describe the process of fission and its control in a nuclear reactor.	
(-)	In some nuclear reactors, the controlled fission of uranium-235 (U-235) is used to release thermal energy.	
(C)	Nuclear fission is	

Nuclear power

5	(a) T	wo i	isotopes of uraniun	n are U-235 an	d U-238.			
	Не	re a	are the symbols of t	he nuclei of th	nese isotop	es.		
				$^{235}_{92}$ U	and	$^{238}_{92}$ U		
	(i)		omplete the sentend se U-235 isotope ha		a cross (⊠)	in the box next 1	to your answer.	(1)
	\times	A	the same number	of neutrons a	s U-238			(1)
	X	В	the same number	of protons as	U-238			
	X	C	more neutrons the	an U-238				
	X	D	more protons tha	n U-238				
	(ii)		235 is radioactive. hen it decays, it rele	eases an alpha	particle.			
		De	escribe an alpha pai	rticle.				(2)
								(2)
	(b) U-	235	can also be made t	to undergo fiss	sion.			
	De	scri	be what happens c	luring nuclear	fission.			
								(4)

	(Total for Question 3 = 9 ma	rks)
		(2)
	Explain why a moderator is needed in a nuclear reactor.	(2)
(c)	Fission is used in nuclear reactors. Graphite is used as a moderator in nuclear reactors.	