1 (a) Figure 2 shows some lines in the absorption spectra from four different galaxies (A, B, C, and D) and from a laboratory source.

All the spectra are aligned and to the same scale.

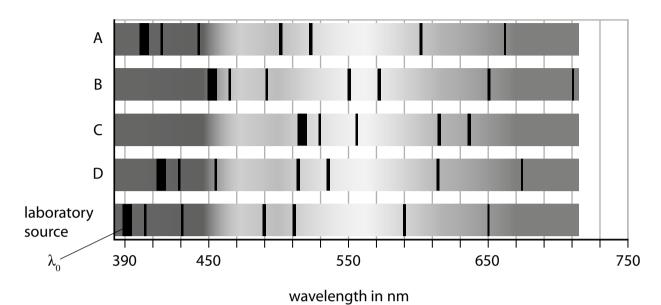


Figure 2

(1)	Explain, using Figure 2, which galaxy is furthest away from us. (3)	

(ii) In Figure 2, the reference wavelength, $\lambda_{0'}$ is s	shown at 390 nm.	
Estimate the change in the reference wavele		
	(1)	
	$\Delta\lambda = \dots$	nm
(iii) Calculate the speed, <i>v</i> , of galaxy D.	Δ ν –	11111
Use the equation $\qquad \qquad \Delta \lambda$		
$v = c \frac{\Delta \lambda}{\lambda_0}$	•	
[c = speed of light = 3×10^8 m/s]		
	(2)	
	v =	m/s

(b) Figure 3 shows a photograph of galaxy D.

This photograph was taken by a student at his home.

(Source: Paul Curtis)

(2)

Figure 3

State **two** ways that the student can improve the observational techniques so that the quality of the image is improved.

	(Tota	l for Question 3 = 8 m	arks)
2			
2			
I			
1			

) Explain what ha			nto glass. (2)
(b) Figure 13 shows	a beam of red light approa	ching one side of a recta	ngular glass block.
The beam of ligi	ht will pass through the bloo	ck and leave through the	opposite side.
AB is a wavefror	nt.		
	beam of light		
	A	air	
		glass	
		block	
	Figu	re 13	
Discuss the path	n of the wavefront AB as it e	nters and leaves the glas	s block.
			(6)

Calculate the frequency of red light, using only the data provided.				
The wavelength of red light is 670 nm.				
Light takes 500 s to travel from the Sun to the Earth.				