
1 (a) Here is the velocity-time graph for a car for the first 20 s of a journey.

(i) Calculate the change in velocity of the car during the first 5 s.

(1)

change in velocity =m/s

(ii) Calculate the acceleration of the car during the first 5 s.

(2)

acceleration = m/s²

(iii) State the size of the resultant force between 10 s and 15 s

(1)

resultant force =N

(a)	The mass of a c	
	Calculate the resultant force on the car required to produce an acceleration of $0.8 \; \text{m/s}^2$.	(2)
*(c)	$resultant \ force =$ A car, travelling at 20 m/s, with just the driver inside takes 70 m to stop in an	N
	emergency. The same car is then fully loaded with luggage and passengers as well as the driver.	
	Explain why it will take a different distance to stop in an emergency from the same speed.	(6)

Going downhill

2 Andrew skis down a hill.

(a)	Andrew starts from the top of the hill and his speed increases as he goes downhill.	
	He controls his speed and direction by using his skis.	
	He brings himself to a stop at the bottom of the hill.	
	Describe the energy changes that happen between starting and stopping.	(3)

Physic	sAndMathsTutor.com (Total for Question 2 = 9 m	arks)	
		(2)	
(111)	Andrew is not injured by the fall even though he was moving quickly. Use ideas about force and momentum to explain why he is not injured.		
(;;;)	force =		N
	Calculate the average force on Andrew as he slows down.	(2)	
	It takes 2.3 s for his momentum to reduce to zero.		
	After he falls over, he slows down by sliding across the snow.		
(ii)	He falls over when his momentum is 2000 kg m/s.		
		(2)	
(-7	Show that his momentum is about 2000 kg m/s when his velocity is 31 m/s.		
	His mass is 67 kg.		

Speed and safety

3	The Highway Code gives this information about the stopping distance of a car.

speed = 30 miles per hour

	thinking distance	braking distance	
П	= 9 m	= 14 m	

(a) (i) What is the stopping distance?

Put a cross (☒) in the box next to your answer.

(1)

- B 9 m

- (ii) Complete the sentence by putting a cross (☒) in the box next to your answer.

The driver's **thinking** distance is most likely to increase when

(1)

- A the driver is tired
- $oxed{oxed}$ **B** there is ice on the road
- C the car is heavier
- D the car moves at a slower speed
- (b) A car has a mass of 800 kg. It has a velocity of 3.0 m/s.

Calculate the momentum of the car.

(2)

momentum of car =kg m/s

(c)	(i)	The braking force on another car is 600 N. The force acts for a distance of 15 m.	
		Calculate the work done by the braking force.	(2)
		work done by braking force =	J
	(ii)	Complete the sentence by putting a cross () in the box next to your answer.	
		The work done by the brakes during braking is equal to	(1)
	X	A the energy transferred	
	X	B the stopping distance	
	X	C the acceleration	
	X	D the thinking distance plus braking distance	
		(Total for Question 1 = 7 ma	rks)