A student investigates how the average speed of the trolley varies with starting height. Figure 9 shows the trolley and runway. trolley runway Figure 9 (a) Describe how the student can determine the average speed of the trolley. (4)

(b) Figure 10 shows his results.

starting height/m	v/ms ⁻¹
0.01	0.22
0.02	0.31
0.04	0.44
0.09	0.66
0.12	0.77
0.14	0.83
0.18	0.94

Figure 10

Figure 11 shows the student's graph.

Figure 11

(i)	The trolley h	
	Calculate the average kinetic energy of the trolley which had a starting height of 0.075 m.	
		(2)
	average kinetic energy=	
(ii)	Determine the gradient of the graph when the height is 0.1 m.	(2)
	gradient =	
(iii)	Describe how the speed of the trolley varies with the changes in height made by the student between 0.04 m and 0.12 m.	
	.,	(2)

	(Total for Question – 13 mark	·c)
	surfaces of the average speed of the trolley.	(3)
	Devise an experiment that would allow him to investigate the effect of different surfaces on the average speed of the trolley.	
(0)	of the runway affect the speed of the trolley down the slope.	

Parachuting

2 Christine is a free-fall parachutist.

This is a velocity–time graph for her jump.

(a) Complete the sentence by putting a cross (\boxtimes) in a box next to your answer.

On the graph, the greatest acceleration is at

(1)

- X A
- \times B
- \times
- \square D

		(3)
	Christine falls =	m
(c) Explain the difference between velocity and speed.		(2)
*(d) The graph shows how Christine's velocity changes from the plane until she reaches terminal velocity.	e time she leaves the	
Explain, in terms of forces, why her velocity changes as sho	wn in the graph.	(6)
Explain, in terms of forces, why her velocity changes as sho	own in the graph.	(6)
Explain, in terms of forces, why her velocity changes as sho	wn in the graph.	(6)
Explain, in terms of forces, why her velocity changes as sho		

(b) Estimate how far Christine falls in the first 2 s.

Motion and forces

3 (a) A crane is lifting a heavy block from the ground to the top of a building.

This is the velocity/time graph for the block as it travels upwards.

(i) For how many seconds is the block moving at a constant velocity?

(1)

number of seconds =

This diagram shows one of the forces acting on the block.

(ii)	Dra	w an arrow on the diagram to represent the weight of the block.	(1)
(iii)	Cor	mplete the sentence by putting a cross (\boxtimes) in the box next to your answer.	
		en the block is moving upwards at a constant velocity, the resultant force the block is	(1)
X	A	upwards and equal to its weight	(-)
X	В	downwards and equal to its weight	
X	C	upwards and more than its weight	
X	D	zero	
(iv)	the	e the velocity/time graph to calculate the acceleration of the block during first 2 s. te the unit.	(3)

												(2)
b) A seco	and cran	e lifts a	n ident	ical blo		 he sam	e heial					
	the velo							16.				
	aph for	-										
3												
	5			seco	ond cra	ine						
	4											
velocity in m/s	2	,;' ,;'		fir	st cran	e						
	1 - //	<i>i</i>								,		
											\\	
	Ö	2	4	6	8	10 time	1 ['] 2 e in s	14	16	18	20	22
Tl								_				
	cond cra								raor no	NA/OF		
Ехріаі	n how th	ie grap	n snow	'S that t	ne sec	ona cr	ane nas	ine iai	rger po	ower.		(2)