Question Number	Answer	Mark	
$\mathbf{1 (a) (i)}$	$10.8+$ or $-0.2(\mathrm{~cm})$	Any value between $10.6(\mathrm{~cm})$ and $11.0(\mathrm{~cm})$ Accept 11 cm	$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1}(\mathbf{a})(\mathbf{i i})$	B $2.1 \times 10^{-2} \mathrm{~cm}^{3}$		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
1(a)(iii)	Temperature conversion to K $50^{\circ} \mathrm{C}$ to 323 K OR $100^{\circ} \mathrm{C}$ to 373 K (1) Substitution $V_{1}=\frac{2.31 \times 10^{-2} \times 373}{323}$ (1) Evaluation $2.67 \times 10^{-2}\left(\mathrm{~cm}^{3}\right)$ (1)	If equation is transformed to give V_{2}, allow correct substitution mark. $\begin{aligned} & 0.0267\left(\mathrm{~cm}^{3}\right), 2.7 \times 10^{-2}\left(\mathrm{~cm}^{3}\right), \\ & 0.027\left(\mathrm{~cm}^{3}\right), 2.67 \times 10^{-8} \mathrm{~m}^{3}, 2.7 \times \\ & 10^{-8} \mathrm{~m}^{3} \end{aligned}$ Allow power of ten error for 2 marks e.g. 267 Allow 2.6×10^{-2} for 3 marks Full marks for correct answer with no working If temperature is not converted to Kelvin, maximum two marks e.g. $\begin{aligned} & \mathrm{V}_{1}=\frac{2.31 \times 10^{-2} \times 100}{50} \\ & 4.62 \times 10^{-2}\left(\mathrm{~cm}^{3}\right) \end{aligned}$ Allow power of ten error for 1 mark e.g. 4.62 2 marks for $4.62 \times 10^{-2}\left(\mathrm{~cm}^{3}\right)$ with no working	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	A description including: (Average) KE/it increases as the temperature increases (1)	Allow energy for kinetic energy Idea of proportionality / KE doubles when the temperature doubles (1)	(3) (Average) KE/it is (directly) proportional to the Kelvin temperature gets all three marks
(Average) KE/it is (directly) proportional to the temperature gets first two marks (when) (1)	Allow absolute scale		

Total for Question 2=8 marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	B do not move at absolute zero		(1)

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{2 (b) (i)}$	An explanation linking: (particles move / collide (1) with	hit/strikes/bounces ignore vibrate	(the walls of the syringe (1) $2^{\text {nd }}$ mark dependent on first		'hits the syringe
:---					
ignore 'push against the syringe'	\quad (2)	(2) marks			
:---					

Question Number	Answer			Acceptable answers	Mark
2(b)(ii)	323 K (1)				
	Volume/ml	Temperature $/{ }^{\circ} \mathrm{C}$	Temperature/K		
	6 6.5	${ }_{25}^{0}$	273 298		
	7.1	50	323		
	7.6 8.2	75 100	348 373		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(iii)	A description including: V increases as T increases (or reverse)/there is a positive correlation (1)	hotter leads to greater volume / cooler leads to smaller volume do not allow 'as heat rises'	
proportional / goes up in equal steps / constant increase (1)	accept a doubling argument for the second mark.(Ignore readings taken from graph if not supporting doubling.) volume is (directly) proportional to temperature for 2 marks	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c)}$	\bullet Substitution 298	(1)	
$9.8(\mathrm{ml})$ (1)	Any answer between $9.8(\mathrm{ml})$ and 9.9(ml) (ignore dp / rounding off) Accept answer with no working for full marks	(2)	

(Total for Question 2 = 8 marks)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	C stationary		(1)

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	(Average KE/it is) halved	divided by 2,multiplied by 0.5	(1)

Question Number	Answer	Acceptable answers	Mark
3 (b)	Explanation in terms of particles linking the following:- - particles collide with / hit /strike / bombard (1) - the wall / sides of the balloon (1) - (causing a) force / (rate of) change in momentum (1)	Ignore "push" particles "molecules/atoms" for gain this mark	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i)}$	$-46+273$ (1)	$273-46 /$ any use of 273	(1)

Question Number	Answer	Acceptable answers	Mark
3 (c)(ii)	substitution: (1) $\frac{101 \times 9.1}{273}=\frac{1.12 \times \mathrm{V}_{3}}{227}$ Transposition (1) $V_{2}=\frac{101 \times 9.1 \times 227}{273 \times 1.12}$ evaluation: (1) $682\left(\mathrm{~m}^{3}\right)$	Accept either Pa or kPa for substitution substitution and transposition in any order ignore power of ten error until evaluation $680\left(\mathrm{~m}^{3}\right), 682.4\left(\mathrm{~m}^{3}\right), 682.35$ (m^{3}) full marks for the correct numerical answer without working	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (c) (i i i)}$	bursts/explodes or words to that effect		(1)

(Total marks for question 4 = $\mathbf{1 0}$ marks)

Question Number	Answer	Acceptable answers	Mark
4(a)	\boxtimes C (graph C)		
			(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	A description including: - collisions (1) - with (walls of) cylinder (1)	hit / bounce off exert force	(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	substitution (1) either $100 \times \mathrm{V}=15.0 \times 21000$ or $\mathrm{V}=\frac{15.0 \times 21000}{100}$ evaluation (1) 3150 (litres)	$\mathrm{V}_{1} \mathrm{P}_{1}=15 \times 21000=315000$ (1 mark)	
	$\mathrm{V}_{2} \mathrm{P}_{2}=\mathbf{1 0 0} \times 3200=320000$ (1 mark)		

Question Number	Answer	Acceptable answers	Mark		
4(b)(iii)	substitution (1) $\frac{21000(\times \mathrm{V})}{305}=\frac{\mathrm{P}(\times \mathrm{V})}{278}$ volume same (1) evaluation (1) $19100(\mathrm{kPa})$	give full marks for correct answer, no working	transposition		
accept $19141(\mathrm{kPa})$ or 19000					
and numbers rounding					
down to 19100				\quad (3)	
:---					

Question number	Answer	Mark
5(a)(i)	A	(1)

Question number	Answer	Additional guidance	Mark
5(a)(ii)	An answer that provides a description by making reference to: • thermal/heat energy (1) dissipated in/transferred to air/surroundings (1)	allow heat 'lost' to surroundings	(2)

Question number	Answer	Additional guidance	Mark
5(b)	An explanation that combines identification - improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark): place the beaker on an insulator (1) so this (material) will reduce rate of energy transfer (1) or	allow named insulator, e.g. cork mat	put a lid on the beaker/make the beaker taller and narrower
wrap the beaker in an insulator (1)			
so this (material) will reduce the			
rate of energy transfer (1)			
or			
reduce the surface areas of the water (1) to give less evaporation (1)	(2)		

Question number	Answer	Additional guidance	Mark
5(c)	rearrangement (1) $(l=) \frac{\Delta Q}{\Delta m}$ substitution (1) $l=\frac{270000}{0.12}$ answer (1) $2250000\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$	award full marks for correct numerical answer without working	$2250\left(\mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right)$ gains 2 marks as power of 10 error

