Question Number	Answer		Mark
1(a)(i)	10.8 + or - 0.2 (cm)	Any value between 10.6(cm) and 11.0 (cm) Accept 11 cm	(1)

Question	Answer	Acceptable answers	Mark
Number			
1 (a)(ii)	B $2.1 \times 10^{-2} \text{ cm}^3$		(1)

Question	Answer	Acceptable answers	Mark
Number			
1(a)(iii)	Temperature conversion to K 50°C to 323K OR 100°C to 373K (1) Substitution $V_1 = \frac{2.31 \times 10^{-2} \times 373}{323}$ (1)	If equation is transformed to give V ₂ , allow correct substitution mark.	(3)
	Evaluation 2.67 x 10 ⁻² (cm ³) (1)	0.0267(cm ³), 2.7 x 10^{-2} (cm ³), 0.027(cm ³), 2.67 x 10^{-8} m ³ , 2.7 x 10^{-8} m ³ Allow power of ten error for 2 marks e.g. 267 Allow 2.6 x 10^{-2} for 3 marks Full marks for correct answer with no working	
		If temperature is not converted to Kelvin, maximum two marks e.g. $V_1 = \frac{2.31 \times 10^{-2} \times 100}{50}$	
		 4.62 x 10⁻²(cm³) Allow power of ten error for 1 mark e.g. 4.62 2 marks for 4.62 x 10⁻² (cm³) with no working 	

Question Number	Answer	Acceptable answers	Mark
1(b)	A description including: (Average) KE/it increases as the temperature increases (1)	Allow energy for kinetic energy Or reverse argument	(3)
	Idea of proportionality / KE doubles when the temperature doubles (1)	(Average) KE/it is (directly) proportional to the Kelvin temperature gets all three marks	
	(when) temperature in Kelvin /K (1)	(Average) KE/it is (directly) proportional to the temperature gets first two marks Allow absolute scale	

Total for Question 2= 8 marks

Question Number	Answer	Acceptable answers	Mark
2(a)	B do not move at absolute zero		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	An explanation linking: • particles move / collide (1) with	hit/strikes/bounces ignore vibrate	
	 the walls of the syringe (1) 2nd mark dependent on first 	with the syringe `hits the syringe' = 2 marks ignore `push against the syringe'	(2)

Question Number	Answer			Acceptable answers	Mark
2(b)(ii)	323K (1)			
	Volume/ml	Temperature/°C	Temperature/K		
	6	0	273		
	6.5	25	298		
	7.1	50	323		
	7.6	75	348		(1)
	8.2	100	373		

Question Number	Answer	Acceptable answers	Mark
2(b)(iii)	 A description including: V increases as T increases (or reverse) / there is a positive correlation (1) proportional / goes up in equal steps / constant increase (1) 	hotter leads to greater volume / cooler leads to smaller volume do not allow 'as heat rises' accept a doubling argument for the second mark.(Ignore readings taken from graph if not supporting doubling.)	
		volume is (directly) proportional to temperature for 2 marks	(2)

Question Number	Answer		Acceptable answers	Mark
2(c)	 Substitution <u>6.5x 450</u> 298 	(1)		
	• evaluation 9.8 (ml) (1)		Any answer between 9.8(ml) and 9.9(ml) (ignore dp / rounding off) Accept answer with no working for full marks	(2)

(Total for Question 2 = 8 marks)

Question Number	Answer	Acceptable answers	Mark
3 (a)(i)	C stationary		(1)

Question Number	Answer	Acceptable answers	Mark
3 (a)(ii)	(Average KE/it is) halved	divided by 2, multiplied by 0.5	(1)

Question Number	Answer	Acceptable answers	Mark
3 (b)	Explanation in terms of particles linking the following:-		(3)
	 particles collide with / hit /strike / bombard (1) 	Accept "molecules/atoms" for particles	
	• the wall / sides of the balloon (1)	Must mention particles etc to gain this mark	
	 (causing a) force / (rate of) change in momentum (1) 	Ignore "push"	

Question Number	Answer	Acceptable answers	Mark
3 (c)(i)	-46 + 273 (1)	273-46 / any use of 273	(1)

Question Number	Answer	Acceptable answers	Mark
3 (c) (ii)	substitution: (1) <u>101x 9.1</u> = <u>1.12x Vz</u>	Accept either Pa or kPa for substitution	(3)
	Transposition (1)	substitution and transposition in any order	
	$V_{2} = \frac{101 \times 9.1 \times 227}{273 \times 1.12}$	ignore power of ten error until evaluation	
	evaluation: (1) $(622 (m^3))$	680 (m ³), 682.4 (m ³), 682.35 (m ³)	
	002 (111)	full marks for the correct numerical answer without working	

Question Number	Answer	Acceptable answers	Mark
3 (c)(iii)	bursts/explodes or words to that effect		(1)

(Total marks for question 4 = 10 marks)

Question Number	Answer	Acceptable answers	Mark
4 (a)	⊠ C (graph C)		
			(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	A description including:collisions (1)	hit / bounce off exert force	
	 with (walls of) cylinder (1) 		(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	substitution (1) either	$V_1P_1 = 15 \times 21000 = 315000$ (1 mark)	
	100 × V = 15.0 × 21 000 or	$V_2P_2 = 100 \times 3200 = 320000$ (1 mark)	
	$V = \frac{15.0 \times 21\ 000}{100}$		
	evaluation (1) 3 150(litres)	award full marks for 3150 (litres) without working	
			(2)

Question Number	Answer	Acceptable answers	Mark
4(b)(iii)	substitution (1) $\frac{21\ 000\ (\times\ V)}{305} = \frac{P\ (\times\ V)}{278}$	give full marks for correct answer, no working	
	volume same (1)	transposition	
	evaluation (1) 19 100 (kPa)	accept 19141 (kPa) or 19000 and numbers rounding down to 191 00	(3)

Question number	Answer	Mark
5(a)(i)	A	(1)

Question number	Answer	Additional guidance	Mark
5(a)(ii)	 An answer that provides a description by making reference to: thermal/heat energy (1) dissipated in/transferred to air/surroundings (1) 	allow heat 'lost' to surroundings	(2)

Question	Answer	Additional guidance	Mark
number			
- (1)			
5 (b)	An explanation that combines	allow named insulator,	
	Identification – Improvement of the	e.g. cork mat	
	(1 mark) and justification/reasoning		
	which must be linked to the	put a lid on the	
	improvement (1 mark):	beaker/make the beaker	
		taller and narrower	
	 place the beaker on an insulator 		
	(1)		
	• so this (material) will reduce rate of		
	energy transfer (1)		
	or		
	• wrap the beaker in an insulator (1)		
	• so this (material) will reduce the		
	rate of energy transfer (1)		
	or		
	 reduce the surface areas of the 		
	water (1)		
	to give less evaporation (1)		(2)

Question number	Answer	Additional guidance	Mark
5(c)	rearrangement (1) $(l =) \frac{\Delta Q}{\Delta m}$ substitution (1) $l = \frac{270000}{0.12}$	award full marks for correct numerical answer without working	
	answer (1) 2 250 000 (J/kg °C)	2250 (J/kg °C) gains 2 marks as power of 10 error	(3)