Question number	Answer	Additional guidance	Mark
1(a)(i)	 Any one reason from: the thermistor and the water are at the same temperature (1) large volume of water gives a steady temperature rise (1) 	accept idea that only small part of thermometer would be in contact with a thermistor in air accept difficult to control change in temperature of thermistor when heated in air	(1)

Question number	Answer	Additional guidance	Mark
1(a)(ii)	 Any one of the following developments to the procedure: add ice to increase lower limit of temperature range (1) use liquid with higher boiling point to increase upper limit of temperature range (1) 	accept named liquid with higher boiling point, e.g. oil	(1)

Question	Answer	Additional guidance	Mark
number			
4.4.2			
1(b)	A comparison and contrast		
	difference from the following		
	difference from the following		
	points to a maximum of three		
	marks:		
	Similarities		
	resistance of both changes		
	with temperature (1)		
	 both graphs show a 		
	non-linear relationship (1)		
	• data comparison, e.g.		
	both have the same		
	resistance at 80 °C (1)		
	Differences		
	resistance of A decreases		
	with temperature but		
	resistance of B increases		
	with temperature (1)	accept (smallest slope/rate of	
	 for A, (largest slope/rate 	change) for A is at higher	
	of change) is at lower	temperature but (smallest	
	temperature but for B,	slope/rate of change) for B is	
	(largest slope/rate of	at lower temperature	
	change) is at higher		
	temperature(s) (1)		
	for B, resistance is		
	constant below 50 °C but		
	for A resistance is roughly		
	constant above 60 °C (1)		(3)

Question	Ind	Mark
number		
*1(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	AO1 (6 marks)	
	 Use of top pan balance to measure mass Insulate beaker to reduce heat loss Ammeter connected in series with heater Voltmeter connected in parallel with heater Use of E = I × V × t to determine energy supplied to the water Accept use of joule-meter to measure energy supplied Use of ΔE = m × c × Δθ to determine the specific heat capacity of the water Measure p.d. across heater Use stopwatch to measure time liquid is heating Measure current in heater Determine mass of water as mass of (beaker and water) – mass of beaker 	
	Measure temperature before and after heating	(6)

Level	Mark	Descriptor
	0	No awardable content.
Level 1 1–2 Demonstrates elements of physics understanding is inaccurate. Understanding of scientific, enquiry and procedures lacks detail. (AO1)		Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1)
		Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2 3–4		Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1)
		Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5–6	Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1)
		Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Mark
2(a)(i)	pressure = force ÷ area	(1)

Question number	Answer	Additional guidance	Mark
2(a)(ii)	rearrangement (1) ($F =$) $P \times A$ calculation of area (1) 2.4 × 1.5 = 3.6	award full marks for correct numerical answer without working maximum 3 marks if kPa not converted to Pa	
	substitution (1) (F =) 12 000 × 3.6 answer (1) 43 200 (N)		(4)

Question number	Answer	Mark
2(a)(iii)	В	(1)

Question number	Answer	Additional guidance	Mark
2(b)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (2 marks): pressure in A is the highest and pressure in C is the lowest (pressure in B is between them) (1) pressure depends on depth of liquid (so) can compare A and C because same liquid (hence) pressure in A is twice that of C (1) pressure depends on density of liquid (so) can compare A and B since same depth hence pressure in A greater than pressure in B (1) 	allow a mathematical approach, i.e. calculating all three pressures from the relevant data	(3)