| Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 1(a)(i) | component ammeter coil of wire battery magnet voltmeter | one mark for each correct tick deduct 1 mark for each extra tick | (2) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 1(a)(ii) | Explanation linking any two of wind (speed) is not constant (1) voltage depends on wind speed (1) | need idea of varying wind {electrical energy / electricity} depends on wind speed higher wind speed gives {higher voltage/more electrical energy/more electricity} = 2 marks voltage is alternating = 2 marks | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------------------------------|---|------| | 1(a)(iii) | (saving) = $2 \times 3 \times 15$ (1) | award full marks for correct answer with no working | (2) | | | 90 (p) (1) | 2 × 3 × 0.15 | | | | | (£) 0.90 | | | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|--------------------------------|----------------|---|------| | 1(b) | | | award full marks for correct answer with no working | (3) | | | power = 2500 (W) | (1) | | | | | (current) = $\frac{2500}{230}$ | (1) ecf | [2.5/230 is 1 mark for these 2] | | | | 11 (A) | (1) | 10.9 / 10.8 | | | | | | accept {0.01 / 0.11 / 1.1}
for
2 marks | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 1(c) | EITHER sometimes no / very little wind (1) | need wind vague references to weather are insufficient | (1) | | | OR | | | | | some appliances rated above 2 kW (1) | may use more than one appliance at once or house needs more (than 2kW) power | | | | | not enough power for kettle | | | | | ignore references to electrical energy / electricity | | Total for Question 3 = 10 marks | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 2(a)(i) | (correct) voltmeter symbol seen anywhere (1) voltmeter symbol connected in | accept symbols that are attempts at circles. accept line through symbol accept for second mark: | (2) | | | parallel / across heater (1) | any symbol or diagram of meter or box provided it is just from one side of the heater to the other | | | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|---|-----|---|------| | 2(a)(ii) | Substitution (into $V = I \times R$)
$V = 0.56 \times 15$ | (1) | Allow full marks for correct answer with no working shown | (2) | | | Evaluation
= 8.4 (V)
(1) | | accept any power of 10 error for 1 mark e.g. 84 (V) or 0.84 (V) scores 1 mark | | | | | | accept rounding to 8 (V) for both marks | | | Question
Number | Answer | | Acceptable answers | Mark | |--------------------|--|-----|--|------| | 2(a)(iii) | Substitution
Energy = 6.0 x 0.40 x 30 | (1) | accept any power of 10 error for
1 mark e.g. 720 or 7200 (J)
scores 1 mark | (2) | | | Evaluation
72(J) | (1) | Allow full marks for correct answer with no working shown | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|--|------| | 2(a)(iv) | An explanation linking any two from: | | (2) | | | (there is the same) current in the (variable) resistor/ wires (1) | accept there is a p.d. across the (variable) resistor or {p.d./voltage} across heater is different to battery {p.d./voltage} | | | | | ignore references to voltmeter and heater | | | | (so) <u>energy</u> is {transferred/used/goes to/ lost/wasted} in the <u>{(variable)</u> resistor/wires} (1) | ignore 'energy wasted as heat' without qualification | | | | (so) { (variable) resistor / wires} gains/loses thermal energy (1) | accept {resistor/wires}
{heats/warms} (up) gains 1
mark | | | | | energy lost in (variable)
{resistor/ wires} as heat
gains both marks | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---------------------------|--|------| | 2(b) | Connecting lines as shown | all 3 for 2 marks | (2) | | | current | allow one mark if one or two lines correct | | | | Surrent Soltage (2) | more than one line from any component or to any graph is incorrect, so a maximum of 1 mark is possible | | Total for Question 4 = 10 marks | Question | Answer | Acceptable answers | Mark | |----------|--------|--------------------|------| | Number | | | | | 3 (a)(i) | В | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---------------------------------------|------| | 3 (a)(ii) | substitution $V = 0.039 \times 185$ (1) | Substitution $7.2 = I \times 185$ (1) | (2) | | | evaluation
7.215 (which is about 7.2) (V)
(1) | transposition $I = 7.2 \div 185 (1)$ | | | Question | Answer | Acceptable answers | Mark | |------------|-------------|--------------------|------| | Number | | | | | 3 (a)(iii) | C (same as) | | (1) | | | | | | | Question | Answer | Acceptable answers | Mark | |----------|---------------------------------------|--------------------------------------|------| | Number | | | | | 3(a)(iv) | An explanation to include | | (2) | | | · | | | | | The resistance (of the LDR) changes | | | | | Greater resistance when in the dark | LDR has less resistance in the light | | | Question
Number | | Indicative Content | Mark | |--------------------|-------|--|------| | QWC | *3(b) | An explanation linking some of the following. less current is used at night-time Resistance (of LDR or circuit) would increase with less ambient light Higher resistance will allow less current (in the circuit) (ORA) Less current in circuit means less energy from the battery Less power required in the dark ORA for light conditions Less current means less energy transferred (per second) Total energy transferred is less during night time (than it would otherwise have been) due to the higher resistance of the LDR | (6) | | Level | 0 | No rewardable content | | | 1 | 1 - 2 | A limited explanation linking the light level to EITHER resistance OR current. eg. It increases the resistance in the dark. the answer communicates ideas using simple language and uses limited scientific terminology | | | 2 | 3 - 4 | spelling, punctuation and grammar are used with limited accuracy A simple explanation linking the light level to TWO of resistance, current, energy. eg. At night-time its resistance would increase. This would reduce the current from the battery the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy | | | 3 | 5 - 6 | A detailed explanation linking the light level to resistance AND current, AND energy. e.g. At night-time the resistance would be more. This would reduce the current and mean that the battery will not have to supply as much energy. the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors | | Total for Question 6 = 12 marks | Question
Number | Answer | Acceptable answers | Mark | |--------------------|-----------------|--------------------|------| | 4(a)(i) | C electrons (1) | | (1) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 4(a)(ii) | current (1) | amps / A /mA/
amperage/ampage
accept rate of flow of charge
but, charge flowing is insufficient
ignore electricity ie rate of flow of
electricity does not score | | | | potential difference/voltage (1) Note: award one mark if these answers are in the wrong order | pd / p.d./ volts / V/ mV / kV etc
can accept e.m.f / emf
just potential is insufficient
accept numerical responses with
correct unit | | | | | award one mark for: meter 1 = ammeter NOT ampmeter AND meter 2 = voltmeter NOT voltameter | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|-------------------------------------|------| | 4(b) | substitution | | | | | 0.4 x 6 x 20 | | | | | (1) | Ignore power of 10 until evaluation | | | | evaluation | e.g. 1 mark for 4.8 | | | | 48 (J) | Give full marks for correct | | | | (1) | answer, | | | | Ignore any unit given by the candidate | no working | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 4(c) | p.d. for current of 0.3 A = 3.0 (V) (1) | 3 (V) seen in any calculation is enough for a mark check graph if no other mark | | | | substitution 3.0 ÷ 0.3 (1) | $3 \div 0.3$ gains two marks $0.3 \div 3$ (= 0.1) gains 1 mark (for 3 V) or bald 0.1 scores 1 mark (for 3V) | | | | | Allow clear ecf from incorrect reading from graph for maximum 2 marks ie their reading ÷ 0.3 but 0.3 ÷ 0.3 does NOT score unless 0.3 written on graph | | | | evaluation 10 (Ω) (1) | Give full marks for correct answer, no working DO NOT award any marks for POT error where there is no working. | | | | Ignore any unit given by the candidate | | (3) | (Total for Question 1 =8 marks) | Question | Answer | Acceptable answers | Mark | |----------|-----------------------|--------------------|------| | Number | | | | | 5(a) | - 1 joule per coulomb | | (1) | | | | | | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|---|---|------| | 5(b)(i) | Substitution (1) | | | | | 1800 = 230 x I | | | | | Transformation (1) | current = power / pd | | | | I = 1800 / 230 | Annualus vikiak mavada ta 7.0 | | | | Evaluation (1) | Any value which rounds to 7.8 such as 7.8261 | | | | 7.8 (A) | | | | | substitution and transposition can be in either order | | | | | | Allow full marks for correct answer with no working shown | (3) | | Question | Answer | Acceptable answers | Mark | |----------|--|--|------| | Number | | | | | 5(b)(ii) | Using E = I x V x T: | Allow ecf from 2(b)(i) | | | | Substitution (1)
7.8 x 230 x 2 (x 60) | Using energy = power x time
1800 x 2 (x 60) (1) | | | | Evaluation(1)
220 000 (J) | Values which round to 220 000 such as 216 000 (J) 215 280 (J) | | | | (note: incorrect conversion of time loses the evaluation mark) | Allow correct conversion to MJ or kJ Allow full marks for correct answer with no working shown | | | | | | (2) | | Question
Number | Answer | Acceptable answers | Mark | |--------------------|--|---|------| | 5(b)(iii) | An explanation linking two from | | | | | Energy is transferred (1) | | | | | (as a result of) collisions of electrons (1) | | | | | with ions/atoms / lattice (1) | electrons collide with each other for 2 marks | (2) | (Total for Question 2 = 8 marks)