1	(a)	Define acceleration. Explain any symbols in your definition.		
		[1]		

(b) Fig. 1.1 shows a graph of speed against time for a train. After 100s the train stops at a station.

Fig. 1.1

(i) For the time interval between 40 s and 100 s, calculate the distance travelled by the train.

distance =[2]

(ii)	The train stops for 80 s, then accelerates to 30m/s with an acceleration of 0.60m/s^2 . It then travels at constant speed. Complete the graph for the interval 100s to 280s , showing your calculations in the space below.
	[5]
	[Total: 8]
	[Total: 8]

2 A hillside is covered with snow. A skier is travelling down the hill.

Fig. 1.1

The table below gives the values of the acceleration of the skier at various heights above the bottom of the hill.

height/m	350	250	150	50
acceleration m/s ²	7.4	3.6	1.2	0

Draw the best curve for these points.

[2]

Fig. 1.2

(D)	Des	Describe what is happening, during the descent, to		
	(i)	the acceleration of the skier,		
		[1]		
	(ii)	the speed of the skier.		
		[1]		
(c)	The	acceleration becomes zero before the skier reaches the bottom of the hill.		
	Use	e ideas about forces to suggest why this happens.		
		[1]		
(d)		ow a height of 50 m, further measurements show that the acceleration of the skier has a ative value.		
	Wha	at does this mean is happening to the speed of the skier in the last 50 m?		
		[1]		
(e)	The	skier has a mass of 60 kg.		
	Cal	culate the resultant force on the skier at a height of 250 m.		
		resultant force =[3]		
		[Total: 9]		

An engineering machine has a piston which is going up and down approximately 75 times per minute.
Describe carefully how a stopwatch may be used to find accurately the time for one up-and-down cycle of the piston.
[4]
[Total: 4]

3

4 Fig 1.1 shows part of a measuring instrument.

Fig. 1.1

(a)	State the name of this instrument.
	[1]
(b)	Record the reading shown in Fig. 1.1.
	[1]
(c)	Describe how you would find the thickness of a sheet of paper used in a magazine.
	[3]
	[Total: 5]

5 A weight attached to one end of a short length of string is swinging from side to side. The highest points in the swing are A and B, as shown in Fig. 1.1.

Fig. 1.1

(a)	With reference to Fig. 1.1, state what is meant by the amplitude of the oscillations.		
	[2]		
(b)	Describe how the amplitude of the oscillations could be measured.		
	[3]		
	[Total: 5]		

6 Fig. 2.1 shows a simple pendulum that swings backwards and forwards between P and Q.

Fig. 2.1

(a)	(a) The time taken for the pendulum to swing from P to Q is approximately 0.5 s.	
	Des	cribe how you would determine this time as accurately as possible.
	••••	
		[2
(b)		State the two vertical forces acting on the pendulum bob when it is at position R.
		1
		2[1
	(ii)	The pendulum bob moves along the arc of a circle. State the direction of the resultant of the two forces in (i).
		[1
(c)	The thar	mass of the bob is $0.2\mathrm{kg}$. During the swing it moves so that P is $0.05\mathrm{m}$ highen R.
	Cal	culate the increase in potential energy of the pendulum bob between R and P.

potential energy =[2]

[Total : 6]