

Mark Scheme (Results)

March 2013

GCSE Physics 5PH2H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

March 2013
Publications Code UG035119
All the material in this publication is copyright
© Pearson Education Ltd 2013

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	C		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark	
$\mathbf{1 (b)}$	substitution (1) 3.7×13 evaluation 48 (C)	(1)		(2)

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	Correct responses can be seen in (i) or (ii) An explanation linking - electrons (1) and one of - removed by friction (1) - (transferred) to plastic	["positive electrons/ protons moving", seen anywhere in part (i) or (ii) loses this mark] ignore reference to charge before rubbing transferred from cloth	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i i)}$	opposite to charge on plastic (1)	charge on cloth is positive	(2)
equal to charge on the plastic	same size as charge on plastic electrons transferred from the cloth equal to electrons lost by cloth		

Total question $1=8$ marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$	Description including 3 of the following: - (Gravitational) potential energy (transferred) to KE(1) - Idea of energy transfer to heat/sound whilst descending (1)	(G)PE (transferred) to KE Allow gravitational energy for GPE	Energy transferred to heat because of air resistance/ friction Chemical energy is transferred to heat energy in Andrew (1) - Idea of energy dissipated on stopping (1)
The energy goes to heat as he stops. Energy is transferred to the surroundings			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	substitution (1) 67×31		(2)
	evaluation (1) $2077(\mathrm{~kg} \mathrm{~m} / \mathrm{s})$	working backwards using 2000 $(v=) 29.85,30$ $(m=) 64.52,65$	
		$67 \times 31=2000$ scores only one mark	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i)}$	substitution (1)	answer to (b)(i)) $\div 2.3$	(2)
	evaluation (1) evo (N)	$900,869.6,869.5$ 903	

Question Number	Answer	Acceptable answers	Mark
2(b)(iii)	an explanation linking two of the following - Force on Andrew is quite small (1) - Because impact time is long (1) - The acceleration/deceleration is quite small (1) - Because impact distance is far (1)	force is reduced/ less /not as strong slows down/changes momentum gradually acceleration $=1.35{ }^{\prime} \mathrm{g}$ ' or 13.5 $\mathrm{m} / \mathrm{s}^{2}$ slows down (rate of) change of momentum scores 2 marks	(2)

Total question $2=8$ marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	$12(\mathrm{~m} / \mathrm{s})$ (1)	Range from $11(\mathrm{~m} / \mathrm{s})$ to 14 $(\mathrm{~m} / \mathrm{s})$	(1)

Question Number	Answer	Acceptable answers	Mark
3(b)(ii)	$\begin{aligned} & \text { Substitution (1) } \\ & \frac{20-0}{5} \\ & \quad \text { evaluation } \\ & \quad 4\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	$\frac{20}{5}$ Full marks for correct answer with no working Allow answers between 3.6 and 4.7 for 2 marks to reflect readings taken from the graph	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 b (i i i)}$	velocity/ speed (measured in) m / s (1)	velocity/ speed (measured in) ms^{-1} acceleration is rate of change of velocity $\mathrm{m} / \mathrm{s} / \mathrm{s} \mathrm{m}$ per s per s [accept per for divide] do not accept m/s times time	(2)

Question Number	Answer	Acceptable answers	Mark
3b(iv)	at constant vel - distance $=60(\mathrm{~m})(1)$ slowing down - distance $=1 / 2 \times 2 \times 20$ (1) - $=20(\mathrm{~m})(1)$	correct answer scores 2 marks	(3)

Total for question $3=10$ marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a)}$	A		(1)

Question Number	Answer	Acceptable answers	Mark		
4(b)	axes labelled correctly With label or unit (1)	activity / Bq / count rate ignore radioactivity time/ seconds/ any time unit	(3)		
correct shaped smooth curve (1)					
line does not reach zero activity					
(1)				\quad	
:---					

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	Idea of 2 half-lives (1) $11400=2 \times 5700$ Idea of halving activity twice (1) $0.55 \times 2 \times 2$ Calculation (1) $2.2(\mathrm{~Bq})$	$11400 / 5700=2$	(3)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	Explanation linking two of: - Background radiation affects the measurement (1)	accept interfering / including	Needs to be subtracted from readings (1)
•Background radiation is variable (1)	varies with place/time/random nature	Background radiation needs to be averaged (1)	repeating test improves reliability

Question Number	Answer	Acceptable answers	Mark
4(c)(iii)	One relevant idea: (New method) more accurate (1) Hard to measure a small activity (1) Background radiation affects readings (1) ignore better method/results / more reliable	(1) grad Need to find difference of two the reading and background Can test smaller samples (1)	Cistinguish between

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{5 (a) (i)}$	11×0.4 (1)	(substitution)	Full marks for correct answer with no calculation		
$4.4(\mathrm{~V})$					
(1)				\quad	(2)
:---					

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{5 (a) (i i)}$	$0.6-0.4$ (1)	(A)	0.2 or $1 / 5$ (A)	(1)	
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i i)}$	B		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
5(b)	An explanation linking: electrons (1) \{colliding with / bumping into\} ions in the lattice / atoms in the metal (1)	colliding with other electrons If no other marks scored, allow for 1 mark for "electrical energy \{transferred/changed\} into thermal/heat energy" do not allow energy being created or produced	(2)

Question Number		Indicative Content ${ }^{\text {a }}$ Mark
QWC	*5(c)	A explanation including some of the following points Light dependent resistors (LDR) - Resistance changes with light intensity - Bright light, low resistance - No light (dark), high resistance - Low resistance gives high current.(RA) Thermistor - Resistance changes with temperature - Negative temperature coefficient - High temperature, low resistance - Low temperature, high resistance - Low resistance gives high current (RA)
Level	0	No rewardable content
1	1-2	- a limited explanation linking light affecting LDR AND heat affecting thermistor OR a correct relationship for one device, e.g. thermistors change resistance when the temperature changes and LDRs change resistance when it gets dark OR the \{resistance decreases/ current increases\} of a LDR when the light gets brighter - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy
2	3-4	- a simple explanation correctly linking the temperature and light with resistance or current for both devices OR a correct relationship for one device with a link to the way this affects the current and resistance. e.g. the resistance of a LDR increases when the light gets dimmer and when the temperature lowers the resistance of a thermistor increases OR the resistance of a LDR decreases when the light gets brighter and this increases the current - the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy
3	5-6	- a detailed explanation including the qualitative relationships for both devices and a link to the way resistance change affects the current in BOTH of them, e.g. the resistance of a LDR is less when the light gets brighter which increases the current. When the temperature lowers the resistance of a thermistor increases. This means that the current will decrease as the thermistor cools down. - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors

Total for question $5=12$ marks

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{6 (a) (i)}$	Any two of:	Reverse arguments Gamma is a wave (1) Alpha is a helium nucleus (1) Alpha is charged (1) Alpha has a mass (1) Gamma penetrates further/ highly (1) Gamma weakly ionising (1) Gamma travels faster (1)	Gamma has no charge Gamma has no mass examples of penetrating power		
alpha highly ionising				\quad (2) \quad	ignore vague comments eg
:---					
stronger					
Ignore uses and dangers	\quad				
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i)}$	D		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b) (i i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (c)}$	An explanation linking:		(2)
	electron(s) (1)	do not allow positive electron	
	is/are lost/gained (1)	knocked off / removed/ released	

Question Number		Indicative Content	Mark
QWC	* 6(d)	An explanation including some of the following points: Radiation from the front of the lens Alpha particles absorbed by glass Beta particles do not penetrate glass Gamma rays pass through glass Background radiation varies There is a large difference in size between front and back counts Radiation detected is gamma rays only Radiation from side of the lens Alpha particles cannot penetrate aluminium Beta particles are absorbed by aluminium Gamma rays pass through aluminium There is a small/no difference in size between front and side counts Perhaps a few gamma rays absorbed by aluminium Background radiation varies Likely to contain gamma rays only May be different from front count due to random nature of emissions Radiation from the back of the lens Alpha particles absorbed by coating and/or glass Beta particles are emitted the from rear surface Gamma rays emitted from radioactive glass There is a large difference in size between front and back counts Background radiation varies Radiation is both beta particles and gamma rays Difference between front and back counts due to beta particles	(6)
Level	0	No rewardable content	
1	1-2	- a limited explanation mentioning two unrelated points, but linking them properly, e.g. beta particles are stopped by thick aluminium, there is most radiation behind the lens - the answer communicates ideas using simple language and limited scientific terminology - spelling, punctuation and grammar are used with limited accur	hout es racy
2	3-4	- a simple explanation mentioning some points with an appro linkage to one of the readings e.g. no beta particles escape forwards because the glass absorbs them OR only gamma r escape to the side because the aluminium stops alpha and particles - the answer communicates ideas showing some evidence of and organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accura	

3	5-6	-a detailed explanation mentioning some of the points with appropriate linkage to a comparison of at least two of the readings e.g. no beta particles escape forwards because the glass absorbs them, but beta particles can escape backwards so that count is higher OR only gamma rays can get through the glass and the thick
	aluminium, so the front and side counts are about the same - the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately - spelling, punctuation and grammar are used with few errors	

Total for question $6=12$ marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG035119 March 2013

For more information on Edexcel qualifications, please visit our website

Llywodraeth Cynulliad Cymru Welsh Assembly Government www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Rewarding Learning

